Cortical High-Density Counterstream Architectures
It’s not a small world after all

Noah Luther

Tuesday, August 2, 2016
Graph Density

Q — What is the density of a graph?
Q — What is the density of a graph?

Density is the ratio of edges present to the total number of edges that could possibly be present in a graph.

— A
Density Examples

Potential Connections:
\[PC = \frac{n \times (n-1)}{2} \]

Network Density:
\[\frac{Actual \ Connections}{Potential \ Connections} \]

Examples:

A
Nodes (n): 2
Potential Connections: 1 \((2 \times 1)/2 \)
Actual Connections: 1
Network Density: 100% \((1/1) \)

B
Nodes (n): 3
Potential Connections: 3 \((3 \times 2)/2 \)
Actual Connections: 3
Network Density: 100% \((3/3) \)

C
Nodes (n): 3
Potential Connections: 3 \((3 \times 2)/2 \)
Actual Connections: 2
Network Density: 66.7% \((2/3) \)
Figure 1A: Comparison with Past Results

![Graph showing average path length vs. graph density with data points for different studies.](image-url)
Where did the data come from?

- Macaque monkeys were the subjects. We are considering their cerebral cortices.
Where did the data come from?

- Macaque monkeys were the subjects. We are considering their cerebral cortices.
- How many areas of the cortex were there in the full interareal network (FIN)?
Where did the data come from?

- Macaque monkeys were the subjects. We are considering their cerebral cortices.
- How many areas of the cortex were there in the full interareal network (FIN)? 91.
Where did the data come from?

- Macaque monkeys were the subjects. We are considering their cerebral cortices.
- How many areas of the cortex were there in the full interareal network (FIN)? 91.
- How many areas were considered in the subset the authors used to build their subgraph?
Where did the data come from?

- Macaque monkeys were the subjects. We are considering their cerebral cortices.
- How many areas of the cortex were there in the full interareal network (FIN)? 91.
- How many areas were considered in the subset the authors used to build their subgraph? 29.
Where did the data come from?

- Macaque monkeys were the subjects, we are considering their cerebral cortices.
- How many areas of the cortex were there in the full interareal network (FIN)? **91**.
- How many areas were considered in the subset the authors used to build their subgraph? **29**.
- Who produced the data set and wrote the cited studies (References 8,11) challenging the small world hypothesis?
Where did the data come from?

- Macaque monkeys were the subjects. We are considering their cerebral cortices.
- How many areas of the cortex were there in the full interareal network (FIN)? 91.
- How many areas were considered in the subset the authors used to build their subgraph? 29.
- Who produced the data set and wrote the cited studies (References 8,11) challenging the small world hypothesis? **The authors of this paper!**
The subgraph is described as 'edge-complete'. What does this mean?
Edge-completeness

- The subgraph $G_{29 \times 29}$ is described as ’edge-complete’. What does this mean? **This means that the subgraph has exactly the same connections between its nodes as the larger graph has between the same nodes.**
Edge-completeness

- The subgraph $G_{29 \times 29}$ is described as ‘edge-complete’. What does this mean? **This means that the subgraph has exactly the same connections between its nodes as the larger graph has between the same nodes.**
- What is ‘edge-incompleteness’? See the bottom of the first page.
Edge-completeness

- The subgraph $G_{29 \times 29}$ is described as ’edge-complete’. What does this mean? **This means that the subgraph has exactly the same connections between its nodes as the larger graph has between the same nodes.**

- What is ’edge-incompleteness’? See the bottom of the first page. **Pathways are untested in edge-incomplete subgraphs? The definition is unclear. Are these definitions consistent?**
Why is this graph more dense than prior works?
NFPs: Newfound Projections

- The NFPs are an additional 36% of extra connections that the authors of this paper found that had not been found in previous work.
NFPs: Newfound Projections

- The NFPs are an additional 36% of extra connections that the authors of this paper found that had not been found in previous work.
- Why weren’t they found in earlier studies, according to the authors?
The NFPs are an additional 36% of extra connections that the authors of this paper found that had not been found in previous work.

Why weren’t they found in earlier studies, according to the authors? They connect widely separated areas (interareal) and are sparse.
NFPs: Newfound Projections

- The NFPs are an additional 36% of extra connections that the authors of this paper found that had not been found in previous work.

- Why weren’t they found in earlier studies, according to the authors? They connect widely separated areas (interareal) and are sparse.

- What is the ’optimized methodology’ the authors used (not the technique)
NFPs: Newfound Projections

- The NFPs are an additional 36% of extra connections that the authors of this paper found that had not been found in previous work.

- Why weren’t they found in earlier studies, according to the authors? They connect widely separated areas (interareal) and are sparse.

- What is the ‘optimized methodology’ the authors used (not the technique) Apply similar procedures and identical area definitions across brains rather than combining results across studies.
The NFPs are an additional 36% of extra connections that the authors of this paper found that had not been found in previous work.

Why weren’t they found in earlier studies, according to the authors? They connect widely separated areas (interareal) and are sparse.

What is the ’optimized methodology’ the authors used (not the technique) Apply similar procedures and identical area definitions across brains rather than combining results across studies.

What is the technique that the authors used to obtain their data?
NFPs: Newfound Projections

- The NFPs are an additional 36% of extra connections that the authors of this paper found that had not been found in previous work.

- Why weren’t they found in earlier studies, according to the authors? They connect widely separated areas (interareal) and are sparse.

- What is the 'optimized methodology’ the authors used (not the technique) Apply similar procedures and identical area definitions across brains rather than combining results across studies.

- What is the technique that the authors used to obtain their data? Retrograde tracers.
Retrograde Tracers

- Retrograde tracers are a method of tracing neural connections from their point of termination to their point of origin.
Retrograde Tracers

- Retrograde tracers are a method of tracing neural connections from their point of termination to their point of origin.
- Weakened viral strains are injected and carried by retrograde transport back to the source of a neural connection.
Retrograde Tracers

- Retrograde tracers are a method of tracing neural connections from their point of termination to their point of origin.
- Weakened viral strains are injected and carried by retrograde transport back to the source of a neural connection.
- Why can viruses be carried by retrograde transport?
Retrograde Tracers

- Retrograde tracers are a method of tracing neural connections from their point of termination to their point of origin.
- Weakened viral strains are injected and carried by retrograde transport back to the source of a neural connection.
- Why can viruses be carried by retrograde transport? They have evolved to exploit this natural cellular mechanism!
Axonal Transport: Where do we inject tracers?
Axonal Transport: Where do we inject tracers?

- Inject at the synapse, on the right. This is the destination of a neural connection.
Axonal Transport: Where do we inject tracers?

- What is the FLN?
What is the FLN? **Fraction of labeled neurons.**

If we injected tracer in area i and were targeting the cell bodies in area j, the FLN is the ratio:

$$f_{ij} = \frac{\text{Number of labeled neurons in area } j}{\text{Total number of extrinsic (not in } i) \text{ labeled neurons}}$$
Axonal Transport: Where do we inject tracers?

- What is the FLN? **Fraction of labeled neurons.**
- If we injected tracer in area i and were targeting the cell bodies in area j, the FLN is the ratio:

\[
 f_{ij} = \frac{\text{Number of labeled neurons in area } j}{\text{Total number of extrinsic (not in } i) \text{ labeled neurons}}
\]

- We use FLN as a weight for our graph
What do these new edges imply about SW?
Small World Refresher

The diagram shows the ratio of the clustering coefficient $C(p) / C(0)$ and the average path length $L(p) / L(0)$ for varying values of p. The points indicate the measured values, while the lines are a visual aid to connect the data points.
Figure 1B: The small world property is density-dependent
Figure 1B Data

Where does this data come from?
Figure 1B Data

- Hypothetical 1000 node ring lattices.
- The path length and clustering are displayed over a range of rewiring probabilities.
- Path length and clustering values are listed for densities from 6% to 66% and color-coded.
At what density does the SW property stop occurring?
At what density does the SW property stop occurring? 42%
At what density does the SW property stop occurring? 42%

What do the authors conclude about the cortex?
Figure 1B Data

- At what density does the SW property stop occurring? 42%
- What do the authors conclude about the cortex? It’s not such a small world after all!
Thresholding

- Thresholding impacts the density. Why do the authors not use thresholding?
Thresholding

Thresholding impacts the density. Why do the authors not use thresholding? **Eliminating pathways with fewer than 10 neurons per tracer drops the density from 66% to 53%**
Thresholding

- Thresholding impacts the density. Why do the authors not use thresholding? **Eliminating pathways with fewer than 10 neurons per tracer drops the density from 66% to 53%**
- 37% of the pathways that would be eliminated have been reported in previous publications.
- Larger injections may result in stronger connections in those same pathways.
Vertex Cover Problem

- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is a vertex cover if every edge in E is incident to at least one vertex in S.
- Can you find a vertex cover in this image?
Vertex Cover Problem

- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is a vertex cover if every edge in E is incident to at least one vertex in S.
- Can you find a vertex cover in this image?
Vertex Cover Problem

- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is a vertex cover if every edge in E is incident to at least one vertex in S.
- Can you find a vertex cover in this image?

- We are not interested in vertex cover explicitly, but in a different problem called 'dominating set analysis' that is similar.
Dominating Set Analysis

- Dominating set analysis quantifies the extent to which connections are gathered by a small set of nodes.
Dominating set analysis quantifies the extent to which connections are gathered by a small set of nodes. A dominating set for a graph $G(V, E)$ is a subset D of V such that every vertex not in D is adjacent to at least one member of D.
Dominating Set Analysis

- Dominating set analysis quantifies the extent to which connections are gathered by a small set of nodes.
- A dominating set for a graph $G(V, E)$ is a subset D of V such that every vertex not in D is adjacent to at least one member of D.
Dominating Set Analysis

- Dominating set analysis quantifies the extent to which connections are gathered by a small set of nodes.
- A dominating set for a graph $G(V, E)$ is a subset D of V such that every vertex not in D is adjacent to at least one member of D.

How is this similar to the vertex cover problem? What does that tell us about the complexity of computing a dominating set?
Minimum Fully Dominating Set (MDS)

- The minimum fully dominating set (MDS) is the smallest set of nodes that forms a dominating set.
Figure 2A: Dominating Sets
The size of the data set makes it easy to find dominating sets visually.
The size of the data set makes it easy to find dominating sets visually.

What is the size of the MDS?
Figure 2A: Dominating Sets

- The size of the data set makes it easy to find dominating sets visually.
- What is the size of the MDS?
- Does the MDS increase if we take away the NFPs (the red boxes)?
Impact of NFPs on Dominating Sets

A

Percent of possible dominating sets

Percent of dominated areas

B

Percent of possible dominating sets

Percent of dominated areas
Aside: Size of the Data Set

Those of you who downloaded the data set, how many monkeys were there?
Aside: Size of the Data Set

Those of you who downloaded the data set, how many monkeys were there? 39.
Aside: Size of the Data Set

- Those of you who downloaded the data set, how many monkeys were there? 39.
- Is this a large data set for a biology project? How expensive and difficult is it to take care of 39 monkeys?
Aside: Size of the Data Set

- Those of you who downloaded the data set, how many monkeys were there? **39.**
- Is this a large data set for a biology project? How expensive and difficult is it to take care of 39 monkeys?
- Is this a large data set in terms of graph theory? Our subgraph contains 29 nodes. What does this tell us about the authors’ conclusions?
Conclusions so far

- The macaque cortex is not small world because the small world property disappears when density exceeds 42%.
- The cortex is more dense than previously reported.
- Newfound projections connect dissimilar areas across long distances with a highly specific purpose.