NP and Computational Intractability

T. M. Murali

March 17, 2014
Algorithm Design

- Patterns
 - Greed. \(O(n \log n) \) interval scheduling.
 - Divide-and-conquer. \(O(n \log n) \) closest pair of points.
 - Dynamic programming. \(O(n^2) \) edit distance.
 - Duality. \(O(n^3) \) maximum flow and minimum cuts.

\[\text{NP vs. co-NP} \]
Algorithm Design

- Patterns
 - Greed. \(O(n \log n) \) interval scheduling.
 - Divide-and-conquer. \(O(n \log n) \) closest pair of points.
 - Dynamic programming. \(O(n^2) \) edit distance.
 - Duality. \(O(n^3) \) maximum flow and minimum cuts.
 - Reductions.
 - Local search.
 - Randomization.
Algorithm Design

- Patterns
 - Greed. \(O(n \log n)\) interval scheduling.
 - Divide-and-conquer. \(O(n \log n)\) closest pair of points.
 - Dynamic programming. \(O(n^2)\) edit distance.
 - Duality. \(O(n^3)\) maximum flow and minimum cuts.
 - Reductions.
 - Local search.
 - Randomization.

- “Anti-patterns”
 - NP-completeness. \(O(n^k)\) algorithm unlikely.
 - PSPACE-completeness. \(O(n^k)\) certification algorithm unlikely.
 - Undecidability. No algorithm possible.
Computational Tractability

- When is an algorithm an efficient solution to a problem?
Computational Tractability

- When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.
Computational Tractability

- When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.
- A problem is *computationally tractable* if it has a polynomial-time algorithm.
Computational Tractability

- When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.
- A problem is *computationally tractable* if it has a polynomial-time algorithm.

<table>
<thead>
<tr>
<th>Polynomial time</th>
<th>Probably not</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shortest path</td>
<td>Longest path</td>
</tr>
<tr>
<td>Matching</td>
<td>3-D matching</td>
</tr>
<tr>
<td>Minimum cut</td>
<td>Maximum cut</td>
</tr>
<tr>
<td>2-SAT</td>
<td>3-SAT</td>
</tr>
<tr>
<td>Planar four-colour</td>
<td>Planar three-colour</td>
</tr>
<tr>
<td>Bipartite vertex cover</td>
<td>Vertex cover</td>
</tr>
<tr>
<td>Primality testing</td>
<td>Factoring</td>
</tr>
</tbody>
</table>
Problem Classification

- Classify problems based on whether they admit efficient solutions or not.
- Some extremely hard problems cannot be solved efficiently (e.g., chess on an n-by-n board).
Problem Classification

- Classify problems based on whether they admit efficient solutions or not.
- Some extremely hard problems cannot be solved efficiently (e.g., chess on an n-by-n board).
- However, classification is unclear for a very large number of discrete computational problems.
Problem Classification

- Classify problems based on whether they admit efficient solutions or not.
- Some extremely hard problems cannot be solved efficiently (e.g., chess on an n-by-n board).
- However, classification is unclear for a very large number of discrete computational problems.
- We can prove that these problems are fundamentally equivalent and are manifestations of the same problem!
Polynomial-Time Reduction

- Goal is to express statements of the type “Problem X is at least as hard as problem Y.”
 - Computing the maximum flow in a network is at least as hard as finding the minimum cut in a network.
- Use the notion of reductions.
- Y is polynomial-time reducible to X ($Y \leq_P X$)
Polynomial-Time Reduction

- Goal is to express statements of the type “Problem X is at least as hard as problem Y.”
 - Computing the maximum flow in a network is at least as hard as finding the minimum cut in a network.
- Use the notion of reductions.
- *Y is polynomial-time reducible to X* (*Y \leq^P X*) if any arbitrary instance of Y can be solved using a polynomial number of standard operations, plus a polynomial number of calls to a black box that solves problem X.
- *Y \leq^P X* implies that “X is at least as hard as Y.”
- Such reductions are *Cook reductions*. *Karp reductions* allow only one call to the black box that solves X.
Usefulness of Reductions

- Claim: If $Y \leq_{P} X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
Usefulness of Reductions

- Claim: If $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
- Contrapositive: If $Y \leq_P X$ and Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.
- Informally: If Y is hard, and we can show that Y reduces to X, then the hardness “spreads” to X.
Optimisation versus Decision Problems

- So far, we have developed algorithms that solve optimisation problems.
 - Compute the *largest* flow.
 - Find the *closest* pair of points.
 - Find the schedule with the *least* completion time.
Optimisation versus Decision Problems

- So far, we have developed algorithms that solve optimisation problems.
 - Compute the largest flow.
 - Find the closest pair of points.
 - Find the schedule with the least completion time.
- Now, we will focus on decision versions of problems, e.g., is there a flow with value at least k, for a given value of k?
- Decision problem: answer to every input is yes or no.

Primes

INSTANCE: A natural number n

QUESTION: Is n prime?
Independent Set and Vertex Cover

- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is an **independent set** if no two vertices in S are connected by an edge.
- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is a **vertex cover** if every edge in E is incident on at least one vertex in S.

Independent Set

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain an independent set of size $\geq k$?

Vertex cover

INSTANCE: Undirected graph G and an integer l

QUESTION: Does G contain a vertex cover of size $\leq l$?
Independent Set and Vertex Cover

Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is an independent set if no two vertices in S are connected by an edge.

Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is a vertex cover if every edge in E is incident on at least one vertex in S.
Independent Set and Vertex Cover

- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is an \textit{independent set} if no two vertices in S are connected by an edge.
- Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is a \textit{vertex cover} if every edge in E is incident on at least one vertex in S.

\textbf{Independent Set}

\textbf{INSTANCE:} Undirected graph G and an integer k

\textbf{QUESTION:} Does G contain an independent set of size $\geq k$?

\textbf{Vertex Cover}

\textbf{INSTANCE:} Undirected graph G and an integer l

\textbf{QUESTION:} Does G contain a vertex cover of size $\leq l$?
Independent Set and Vertex Cover

Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is an independent set if no two vertices in S are connected by an edge.

Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is a vertex cover if every edge in E is incident on at least one vertex in S.

Independent Set

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain an independent set of size $\geq k$?

Vertex Cover

INSTANCE: Undirected graph G and an integer l

QUESTION: Does G contain a vertex cover of size $\leq l$?

Demonstrate simple equivalence between these two problems.
Independent Set and Vertex Cover

Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is an *independent set* if no two vertices in S are connected by an edge. Given an undirected graph $G(V, E)$, a subset $S \subseteq V$ is a *vertex cover* if every edge in E is incident on at least one vertex in S.

Independent Set

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain an independent set of size $\geq k$?

Vertex cover

INSTANCE: Undirected graph G and an integer l

QUESTION: Does G contain a vertex cover of size $\leq l$?

Demonstrate simple equivalence between these two problems.

Claim: $\text{Independent Set} \leq_P \text{Vertex Cover}$ and $\text{Vertex Cover} \leq_P \text{Independent Set}$.
Strategy for Proving Indep. Set \leq_p Vertex Cover

1. Start with an arbitrary instance of **Independent Set**: an undirected graph $G(V, E)$ and an integer k.

2. From $G(V, E)$ and k, create an instance of **Vertex Cover**: an undirected graph $G'(V', E')$ and an integer l.
 - G' related to G in some way.
 - l can depend upon k and size of G.

3. Prove that $G(V, E)$ has an independent set of size $\geq k$ iff $G'(V', E')$ has a vertex cover of size $\leq l$.
Strategy for Proving Indep. Set \(\leq_P \) Vertex Cover

1. Start with an arbitrary instance of **INDEPENDENT SET**: an undirected graph \(G(V, E) \) and an integer \(k \).
2. From \(G(V, E) \) and \(k \), create an instance of **VERTEX COVER**: an undirected graph \(G'(V', E') \) and an integer \(l \).
 - \(G' \) related to \(G \) in some way.
 - \(l \) can depend upon \(k \) and size of \(G \).
3. Prove that \(G(V, E) \) has an independent set of size \(\geq k \) iff \(G'(V', E') \) has a vertex cover of size \(\leq l \).
 - Transformation and proof must be correct for all possible graphs \(G(V, E) \) and all possible values of \(k \).
 - Why is the proof an iff statement?
Strategy for Proving Indep. Set \leq_P Vertex Cover

1. Start with an arbitrary instance of INDEPENDENT SET: an undirected graph $G(V, E)$ and an integer k.
2. From $G(V, E)$ and k, create an instance of VERTEX COVER: an undirected graph $G'(V', E')$ and an integer l.
 - G' related to G in some way.
 - l can depend upon k and size of G.
3. Prove that $G(V, E)$ has an independent set of size $\geq k$ iff $G'(V', E')$ has a vertex cover of size $\leq l$.

- Transformation and proof must be correct for all possible graphs $G(V, E)$ and all possible values of k.
- Why is the proof an iff statement? In the reduction, we are using black box for VERTEX COVER to solve INDEPENDENT SET.
 (i) If there is an independent set size $\geq k$, we must be sure that there is a vertex cover of size $\leq l$, so that we know that the black box will find this vertex cover.
 (ii) If the black box finds a vertex cover of size $\leq l$, we must be sure we can construct an independent set of size $\geq k$ from this vertex cover.
Proof that Independent Set \(\leq_p \) Vertex Cover

1. Arbitrary instance of **Indepependent Set**: an undirected graph \(G(V, E) \) and an integer \(k \).
2. Let \(|V| = n \).
3. Create an instance of **Vertex Cover**: same undirected graph \(G(V, E) \) and integer \(n - k \).
Proof that Independent Set \leq_p Vertex Cover

1. Arbitrary instance of **INDEPENDENT SET**: an undirected graph $G(V, E)$ and an integer k.

2. Let $|V| = n$.

3. Create an instance of **VERTEX COVER**: same undirected graph $G(V, E)$ and integer $n - k$.

4. Claim: $G(V, E)$ has an independent set of size $\geq k$ iff $G(V, E)$ has a vertex cover of size $\leq n - k$.

 Proof: S is an independent set in G iff $V - S$ is a vertex cover in G.

T. M. Murali March 17, 2014 NP and Computational Intractability
Proof that Independent Set \(\leq_p \) Vertex Cover

1. Arbitrary instance of **INDEPENDENT SET**: an undirected graph \(G(V, E) \) and an integer \(k \).
2. Let \(|V| = n \).
3. Create an instance of **VERTEX COVER**: same undirected graph \(G(V, E) \) and integer \(n - k \).
4. Claim: \(G(V, E) \) has an independent set of size \(\geq k \) iff \(G(V, E) \) has a vertex cover of size \(\leq n - k \).

 Proof: \(S \) is an independent set in \(G \) iff \(V - S \) is a vertex cover in \(G \).

 ▶ Same idea proves that **VERTEX COVER \(\leq_p \) INDEPENDENT SET**
Vertex Cover and Set Cover

- **Independent Set** is a “packing” problem: pack as many vertices as possible, subject to constraints (the edges).
- **Vertex Cover** is a “covering” problem: cover all edges in the graph with as few vertices as possible.
- There are more general covering problems.

Set Cover

INSTANCE: A set U of n elements, a collection S_1, S_2, \ldots, S_m of subsets of U, and an integer k.

QUESTION: Is there a collection of $\leq k$ sets in the collection whose union is U?

Figure 8.2 An instance of the Set Cover Problem.
Vertex Cover \(\leq_P\) **Set Cover**

- **Input to** *Vertex Cover*: an undirected graph \(G(V, E)\) and an integer \(k\).
- Let \(|V| = n\).
- Create an instance \(\{U, \{S_1, S_2, \ldots S_n\}\}\) of **Set Cover** where
Vertex Cover \leq_P Set Cover

$U = \{(x_1, x_2), (x_1, x_4), (x_2, x_3), (x_2, x_4), (x_2, x_7), (x_3, x_7), (x_4, x_5), (x_5, x_6), (x_5, x_7), (x_6, x_7)\}$

$S_1 = \{(x_1, x_2), (x_1, x_4)\}$

$S_2 = \{(x_1, x_2), (x_2, x_3), (x_2, x_4), (x_2, x_7)\}$

$S_3, S_4, S_5, S_6,$ and S_7 defined similarly.

▶ Input to **Vertex Cover**: an undirected graph $G(V, E)$ and an integer k.
▶ Let $|V| = n$.
▶ Create an instance $\{U, \{S_1, S_2, \ldots S_n\}\}$ of **Set Cover** where
 ▶ $U = E$,
 ▶ for each vertex $i \in V$, create a set $S_i \subseteq U$ of the edges incident on i.

\[S_1 = \{(x_1, x_2), (x_1, x_4)\} \]

\[S_2 = \{(x_1, x_2), (x_2, x_3), (x_2, x_4), (x_2, x_7)\} \]

\[S_3, S_4, S_5, S_6, \text{ and } S_7 \text{ defined similarly.} \]
Vertex Cover \leq_P Set Cover

$U = \{(x_1, x_2), (x_1, x_4), (x_2, x_3), (x_2, x_4), (x_2, x_7), (x_3, x_7), (x_4, x_5), (x_5, x_6), (x_5, x_7), (x_6, x_7)\}$

$S_1 = \{(x_1, x_2), (x_1, x_4)\}$

$S_2 = \{(x_1, x_2), (x_2, x_3), (x_2, x_4), (x_2, x_7)\}$

$S_3, S_4, S_5, S_6, \text{ and } S_7$ defined similarly.

- **Input to Vertex Cover**: an undirected graph $G(V, E)$ and an integer k.
- **Let** $|V| = n$.
- **Create an instance** $\{U, \{S_1, S_2, \ldots, S_n\}\}$ of Set Cover where
 - $U = E$,
 - for each vertex $i \in V$, create a set $S_i \subseteq U$ of the edges incident on i.
- **Claim**: U can be covered with fewer than k subsets iff G has a vertex cover with at most k nodes.
- **Proof strategy**:
 1. If $G(V, E)$ has a vertex cover of size at most k, then U can be covered with at most k subsets.
 2. If U can be covered with at most k subsets, then $G(V, E)$ has a vertex cover of size at most k.

T. M. Murali March 17, 2014 NP and Computational Intractability
Boolean Satisfiability

- Abstract problems formulated in Boolean notation.
- Often used to specify problems, e.g., in AI.
Boolean Satisfiability

- Abstract problems formulated in Boolean notation.
- Often used to specify problems, e.g., in AI.
- We are given a set $X = \{x_1, x_2, \ldots, x_n\}$ of n Boolean variables.
- Each variable can take the value 0 or 1.
- A term is a variable x_i or its negation $\overline{x_i}$.
- A clause of length l is a disjunction (or) of l distinct terms $t_1 \lor t_2 \lor \cdots t_l$.
- A truth assignment for X is a function $\nu : X \rightarrow \{0, 1\}$.
- An assignment satisfies a clause C if at least one term in C has the value 1 in the assignment.
- An assignment satisfies a collection of clauses $C_1, C_2, \ldots C_k$ if it causes each clause to take the value 1,
Boolean Satisfiability

- Abstract problems formulated in Boolean notation.
- Often used to specify problems, e.g., in AI.
- We are given a set $X = \{x_1, x_2, \ldots, x_n\}$ of n Boolean variables.
- Each variable can take the value 0 or 1.
- A term is a variable x_i or its negation $\overline{x_i}$.
- A clause of length l is a disjunction (or) of l distinct terms $t_1 \lor t_2 \lor \cdots t_l$.
- A truth assignment for X is a function $\nu : X \to \{0, 1\}$.
- An assignment satisfies a clause C if at least one term in C has the value 1 in the assignment.
- An assignment satisfies a collection of clauses $C_1, C_2, \ldots C_k$ if it causes each clause to take the value 1, i.e., $C_1 \land C_2 \land \cdots C_k$ evaluates to 1.
 - ν is a satisfying assignment with respect to $C_1, C_2, \ldots C_k$.
 - set of clauses $C_1, C_2, \ldots C_k$ is satisfiable.
SAT and 3-SAT

Satisfiability Problem (SAT)

INSTANCE: A set of clauses $C_1, C_2, \ldots C_k$ over a set $X = \{x_1, x_2, \ldots x_n\}$ of n variables.

QUESTION: Is there a satisfying truth assignment for X with respect to C?
SAT and 3-SAT

3-Satisfiability Problem (SAT)

INSTANCE: A set of clauses $C_1, C_2, \ldots C_k$, each of length three, over a set $X = \{x_1, x_2, \ldots x_n\}$ of n variables.

QUESTION: Is there a satisfying truth assignment for X with respect to C?
SAT and 3-SAT

3-Satisfiability Problem (SAT)

INSTANCE: A set of clauses $C_1, C_2, \ldots C_k$, each of length three, over a set $X = \{x_1, x_2, \ldots x_n\}$ of n variables.

QUESTION: Is there a satisfying truth assignment for X with respect to C?

- SAT and 3-SAT are fundamental combinatorial search problems.
- We have to make n independent decisions (the assignments for each variable) while satisfying a set of constraints.
- Satisfying each constraint in isolation is easy, but we have to make our decisions so that all constraints are satisfied simultaneously.
3-SAT and Independent Set

\[C_1 = x_1 \lor \overline{x_2} \lor \overline{x_3} \]
\[C_2 = \overline{x_1} \lor x_2 \lor x_4 \]
\[C_3 = \overline{x_1} \lor x_3 \lor \overline{x_4} \]

- We want to prove \(3\text{-SAT} \leq_P \text{INDEPENDENT SET}\).
3-SAT and Independent Set

\[C_1 = x_1 \lor \overline{x_2} \lor \overline{x_3} \]
\[C_2 = \overline{x_1} \lor x_2 \lor x_4 \]
\[C_3 = \overline{x_1} \lor x_3 \lor \overline{x_4} \]

1. Select \(x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 1 \).

We want to prove \(3\text{-SAT} \leq_P \text{INDEPENDENT SET} \).

Two ways to think about 3-SAT:

1. Make an independent 0/1 decision on each variable and succeed if we achieve one of three ways in which to satisfy each clause.
3-SAT and Independent Set

\[C_1 = x_1 \lor \overline{x_2} \lor \overline{x_3} \]
\[C_2 = \overline{x_1} \lor x_2 \lor x_4 \]
\[C_3 = \overline{x_1} \lor x_3 \lor \overline{x_4} \]

1. Select \(x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 1 \).
2. Choose one literal from each clause to evaluate to true.

We want to prove \(3\text{-SAT} \leq_P \text{INDEPENDENT SET} \).

Two ways to think about 3-SAT:

1. Make an independent 0/1 decision on each variable and succeed if we achieve one of three ways in which to satisfy each clause.
2. Choose (at least) one term from each clause. Find a truth assignment that causes each chosen term to evaluate to 1. Ensure that no two terms selected conflict, e.g., select \(\overline{x_2} \) in \(C_1 \) and \(x_2 \) in \(C_2 \).
3-SAT and Independent Set

\[C_1 = x_1 \lor \overline{x_2} \lor \overline{x_3} \]
\[C_2 = \overline{x_1} \lor x_2 \lor x_4 \]
\[C_3 = \overline{x_1} \lor x_3 \lor \overline{x_4} \]

1. Select \(x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 1. \)
2. Choose one literal from each clause to evaluate to true.

Choices of selected literals imply \(x_1 = 0, x_2 = 0, x_4 = 1. \)

We want to prove \(3\text{-SAT} \leq_p \text{INDEPENDENT SET}. \)

Two ways to think about 3-SAT:

1. Make an independent 0/1 decision on each variable and succeed if we achieve one of three ways in which to satisfy each clause.
2. Choose (at least) one term from each clause. Find a truth assignment that causes each chosen term to evaluate to 1. Ensure that no two terms selected conflict, e.g., select \(\overline{x_2} \) in \(C_1 \) and \(x_2 \) in \(C_2 \).
Proving 3-SAT \leq_P Independent Set

$C_1 = x_1 \lor \overline{x_2} \lor \overline{x_3}$

$C_2 = \overline{x_1} \lor x_2 \lor x_4$

$C_3 = \overline{x_1} \lor x_3 \lor \overline{x_4}$

- We are given an instance of 3-SAT with k clauses of length three over n variables.
- Construct an instance of independent set: graph $G(V, E)$ with $3k$ nodes.
Proving $3\text{-SAT} \leq_p \text{Independent Set}$

We are given an instance of 3-SAT with k clauses of length three over n variables.

Construct an instance of independent set: graph $G(V, E)$ with $3k$ nodes.

- For each clause C_i, $1 \leq i \leq k$, add a triangle of three nodes v_{i1}, v_{i2}, v_{i3} and three edges to G.
- Label each node $v_{ij}, 1 \leq j \leq 3$ with the jth term in C_i.
We are given an instance of 3-SAT with k clauses of length three over n variables.

Construct an instance of independent set: graph $G(V, E)$ with $3k$ nodes.

- For each clause C_i, $1 \leq i \leq k$, add a triangle of three nodes v_{i1}, v_{i2}, v_{i3} and three edges to G.
- Label each node v_{ij}, $1 \leq j \leq 3$ with the jth term in C_i.
- Add an edge between each pair of nodes whose labels correspond to terms that conflict.
Proving 3-SAT \leq_P Independent Set

Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.

\[
\begin{align*}
C_1 &= x_1 \lor \overline{x_2} \lor \overline{x_3} \\
C_2 &= \overline{x_1} \lor x_2 \lor x_4 \\
C_3 &= \overline{x_1} \lor x_3 \lor \overline{x_4}
\end{align*}
\]
Proving 3-SAT \leq^P Independent Set

$C_1 = x_1 \lor \overline{x_2} \lor \overline{x_3}$

$C_2 = \overline{x_1} \lor x_2 \lor x_4$

$C_3 = \overline{x_1} \lor x_3 \lor \overline{x_4}$

Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.

Satisfiable assignment \rightarrow independent set of size $\geq k$:

- For each variable x_i, only x_i or $\overline{x_i}$ is the label of a node in S.
- If x_i is the label of a node in S, set $x_i = 1$; else set $x_i = 0$.
- Why is each clause satisfied?
Proving 3-SAT \leq_P Independent Set

$C_1 = x_1 \lor \overline{x_2} \lor \overline{x_3}$

$C_2 = \overline{x_1} \lor x_2 \lor x_4$

$C_3 = \overline{x_1} \lor x_3 \lor x_4$

Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.

Satisfiable assignment \rightarrow independent set of size $\geq k$: Each triangle in G has at least one node whose label evaluates to 1. Set S of nodes consisting of one such node from each triangle forms an independent set of size $\geq k$. Why?
Proving 3-SAT \leq_P Independent Set

$C_1 = x_1 \lor \overline{x}_2 \lor \overline{x}_3$

$C_2 = \overline{x}_1 \lor x_2 \lor x_4$

$C_3 = \overline{x}_1 \lor x_3 \lor x_4$

Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.

Satisfiable assignment \rightarrow independent set of size $\geq k$: Each triangle in G has at least one node whose label evaluates to 1. Set S of nodes consisting of one such node from each triangle forms an independent set of size $\geq k$. Why?

Independent set S of size $\geq k$ \rightarrow satisfiable assignment:
Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.

Satisfiable assignment \rightarrow independent set of size $\geq k$: Each triangle in G has at least one node whose label evaluates to 1. Set S of nodes consisting of one such node from each triangle forms an independent set of size $\geq k$. Why?

Independent set S of size $\geq k$ \rightarrow satisfiable assignment: the size of this set is k. How do we construct a satisfying truth assignment from the nodes in the independent set?
Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.

Satisfiable assignment \rightarrow independent set of size $\geq k$: Each triangle in G has at least one node whose label evaluates to 1. Set S of nodes consisting of one such node from each triangle forms an independent set of size $\geq k$. Why?

Independent set S of size $\geq k$ \rightarrow satisfiable assignment: the size of this set is k. How do we construct a satisfying truth assignment from the nodes in the independent set?

For each variable x_i, only x_i or $\overline{x_i}$ is the label of a node in S. Why?
Proving 3-SAT \leq_P Independent Set

Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.

Satisfiable assignment \rightarrow independent set of size $\geq k$: Each triangle in G has at least one node whose label evaluates to 1. Set S of nodes consisting of one such node from each triangle forms an independent set of size $\geq k$. Why?

Independent set S of size $\geq k \rightarrow$ satisfiable assignment: the size of this set is k. How do we construct a satisfying truth assignment from the nodes in the independent set?

- For each variable x_i, only x_i or $\overline{x_i}$ is the label of a node in S. Why?
- If x_i is the label of a node in S, set $x_i = 1$; else set $x_i = 0$.
- Why is each clause satisfied?
Transitivity of Reductions

Claim: If \(Z \leq_P Y \) and \(Y \leq_P X \), then \(Z \leq_P X \).
Transitivity of Reductions

- Claim: If $Z \leq_P Y$ and $Y \leq_P X$, then $Z \leq_P X$.
- We have shown

$$3\text{-SAT} \leq_P \text{INDEPENDENT SET} \leq_P \text{VERTEX COVER} \leq_P \text{SET COVER}$$
Finding vs. Certifying

- Is it easy to check if a given set of vertices in an undirected graph forms an independent set of size at least k?
- Is it easy to check if a particular truth assignment satisfies a set of clauses?
Finding vs. Certifying

- Is it easy to check if a given set of vertices in an undirected graph forms an independent set of size at least k?
- Is it easy to check if a particular truth assignment satisfies a set of clauses?
- We draw a contrast between finding a solution and checking a solution (in polynomial time).
- Since we have not been able to develop efficient algorithms to solve many decision problems, let us turn our attention to whether we can check if a proposed solution is correct.
Problems and Algorithms

- Equate a decision problem X to the set of inputs for which the answer is yes,
Equate a decision problem X to the set of inputs for which the answer is yes, e.g., $\text{PRIMES} = \{2, 3, 5, 7, 11, \ldots\}$.
Problems and Algorithms

- Equate a decision problem X to the set of inputs for which the answer is yes, e.g., $\text{PRIMES} = \{2, 3, 5, 7, 11, \ldots\}$.

 Decision Problem
 INPUT: a natural number n
 QUESTION: is n a prime number?

 Membership Problem
 INPUT: a natural number n
 QUESTION: is n in $\text{PRIMES} = \{2, 3, 5, 7, 11, \ldots\}$?
Problems and Algorithms

- Equate a decision problem X to the set of inputs for which the answer is yes, e.g., $\text{PRIMES} = \{2, 3, 5, 7, 11, \ldots\}$.

 Decision Problem
 INPUT: a natural number n
 QUESTION: is n a prime number?

 Membership Problem
 INPUT: a natural number n
 QUESTION: is n in $\text{PRIMES} = \{2, 3, 5, 7, 11, \ldots\}$?

- An algorithm A for a decision problem receives an input s and returns $A(s) \in \{\text{yes}, \text{no}\}$.

- A *solves* the problem X if for every input s, $A(s) = \text{yes}$ iff $s \in X$.
Problems and Algorithms

- Equate a decision problem X to the set of inputs for which the answer is yes, e.g., $\text{PRIMES} = \{2, 3, 5, 7, 11, \ldots\}$.

 Decision Problem

 INPUT: A natural number n

 QUESTION: Is n a prime number?

 Membership Problem

 INPUT: A natural number n

 QUESTION: Is n in $\text{PRIMES} = \{2, 3, 5, 7, 11, \ldots\}$?

- An algorithm A for a decision problem receives an input s and returns $A(s) \in \{\text{yes}, \text{no}\}$.

- A solves the problem X if for every input s, $A(s) = \text{yes}$ iff $s \in X$.

- A has a *polynomial running time* if there is a polynomial function $p(\cdot)$ such that for every input s, A terminates on s in at most $O(p(|s|))$ steps.

 - There is an algorithm such that $p(|s|) = |s|^8$ for PRIMES (Agarwal, Kayal, Saxena, 2002).
Problems and Algorithms

- Equate a decision problem X to the set of inputs for which the answer is yes, e.g., $\text{PRIMES} = \{2, 3, 5, 7, 11, \ldots\}$.

 Decision Problem
 INPUT: a natural number n
 QUESTION: is n a prime number?

 Membership Problem
 INPUT: a natural number n
 QUESTION: is n in $\text{PRIMES} = \{2, 3, 5, 7, 11, \ldots\}$?

- An algorithm A for a decision problem receives an input s and returns $A(s) \in \{\text{yes, no}\}$.
- A solves the problem X if for every input s, $A(s) = \text{yes}$ iff $s \in X$.
- A has a *polynomial running time* if there is a polynomial function $p(\cdot)$ such that for every input s, A terminates on s in at most $O(p(|s|))$ steps.
 - There is an algorithm such that $p(|s|) = |s|^8$ for PRIMES (Agarwal, Kayal, Saxena, 2002).
- \mathcal{P}: set of problems X for which there is a polynomial time algorithm.
Problems and Algorithms

- Equate a decision problem X to the set of inputs for which the answer is yes, e.g., $\text{PRIMES} = \{2, 3, 5, 7, 11, \ldots\}$.

 Decision Problem

 INPUT: a natural number n

 QUESTION: is n a prime number?

 Membership Problem

 INPUT: a natural number n

 QUESTION: is n in $\text{PRIMES} = \{2, 3, 5, 7, 11, \ldots\}$?

- An algorithm A for a decision problem receives an input s and returns $A(s) \in \{\text{yes, no}\}$.

- A solves the problem X if for every input s, $A(s) = \text{yes}$ iff $s \in X$.

- A has a *polynomial running time* if there is a polynomial function $p(\cdot)$ such that for every input s, A terminates on s in at most $O(p(|s|))$ steps.

 - There is an algorithm such that $p(|s|) = |s|^8$ for PRIMES (Agarwal, Kayal, Saxena, 2002).

- \mathcal{P}: set of problems X for which there is a polynomial time algorithm.

- A decision problem X is in \mathcal{P} iff there is an algorithm A with polynomial running time such that for all inputs s,

 - if $X(s) = \text{yes}$ then $A(s) = \text{yes}$ and

 - if $X(s) = \text{no}$ then $A(s) = \text{no}$
Efficient Certification

- A “checking” algorithm for a decision problem X has a different structure from an algorithm that solves X.
- Checking algorithm needs input s as well as a separate “certificate” t that contains evidence that $s \in X$.
- Checker for **Independent Set**:

 - t is a set of at least k vertices; checker verifies that no pair of these vertices are connected by an edge.

An algorithm B is an efficient certifier for a problem X if

1. B is a polynomial time algorithm that takes two inputs s and t and
2. for all inputs s to X,
 - if $X(s) = \text{yes}$, then there is a proof t such that $B(s, t) = \text{yes}$, and
 - if $X(s) = \text{no}$, then for all proofs t, $B(s, t) = \text{no}$.

- Certifier’s job is to take a candidate short proof (t) that $s \in X$ and check in polynomial time whether t is a correct proof.
- Certifier does not care about how to find these proofs.
- False proofs cannot fool the certifier, so if $s \not\in X$ then there is no proof t such that $B(s, t) = \text{yes}$.

Efficient Certification

- A “checking” algorithm for a decision problem \(X \) has a different structure from an algorithm that solves \(X \).
- Checking algorithm needs input \(s \) as well as a separate “certificate” \(t \) that contains evidence that \(s \in X \).
- Checker for \textsc{Independent Set}: \(t \) is a set of at least \(k \) vertices; checker verifies that no pair of these vertices are connected by an edge.
Efficient Certification

▶ A “checking” algorithm for a decision problem X has a different structure from an algorithm that solves X.

▶ Checking algorithm needs input s as well as a separate “certificate” t that contains evidence that $s \in X$.

▶ Checker for **Independent Set**: t is a set of at least k vertices; checker verifies that no pair of these vertices are connected by an edge.

▶ An algorithm B is an **efficient certifier** for a problem X if
 1. B is a polynomial time algorithm that takes two inputs s and t and
 2. for all inputs s to X,
 ▶ if $X(s) = \text{yes}$, then there is a proof t such that $B(s, t) = \text{yes}$, and
 ▶ if $X(s) = \text{no}$, then for all proofs t, $B(s, t) = \text{no}$.
Efficient Certification

- A “checking” algorithm for a decision problem X has a different structure from an algorithm that solves X.
- Checking algorithm needs input s as well as a separate “certificate” t that contains evidence that $s \in X$.
- Checker for **Independent Set**: t is a set of at least k vertices; checker verifies that no pair of these vertices are connected by an edge.
- An algorithm B is an *efficient certifier* for a problem X if
 1. B is a polynomial time algorithm that takes two inputs s and t and
 2. for all inputs s to X,
 - if $X(s) = \text{yes}$, then there is a proof t such that $B(s, t) = \text{yes}$, and
 - if $X(s) = \text{no}$, then for all proofs t, $B(s, t) = \text{no}$.
- Certifier’s job is to take a candidate short proof (t) that $s \in X$ and check in polynomial time whether t is a correct proof.
- Certifier does not care about how to find these proofs.
- False proofs cannot fool the certifier, so if $s \notin X$ then there is no proof t such that $B(s, t) = \text{yes}$.
\[\mathcal{NP} \]

- \(\mathcal{NP} \) is the set of all problems for which there exists an efficient certifier.
- \(3\text{-SAT} \in \mathcal{NP} \):
\[\mathcal{NP} \]

- \(\mathcal{NP} \) is the set of all problems for which there exists an efficient certifier.
- \(3\text{-SAT} \in \mathcal{NP} \): \(t \) is a truth assignment; \(B \) evaluates the clauses with respect to the assignment.
\(\mathcal{NP} \)

- \(\mathcal{NP} \) is the set of all problems for which there exists an efficient certifier.
- \(3\text{-SAT} \in \mathcal{NP} \): \(t \) is a truth assignment; \(B \) evaluates the clauses with respect to the assignment.
- \text{Independent Set} \in \mathcal{NP}:
\(\text{NP} \)

- \(\text{NP} \) is the set of all problems for which there exists an efficient certifier.
- \(3\text{-SAT} \in \text{NP} \): \(t \) is a truth assignment; \(B \) evaluates the clauses with respect to the assignment.
- \text{Independent Set} \in \text{NP}: \(t \) is a set of at least \(k \) vertices; \(B \) checks that no pair of these vertices are connected by an edge.
\(\mathsf{NP} \)

- \(\mathsf{NP} \) is the set of all problems for which there exists an efficient certifier.
- \(3\text{-SAT} \in \mathsf{NP} \): \(t \) is a truth assignment; \(B \) evaluates the clauses with respect to the assignment.
- \(\text{Independent Set} \in \mathsf{NP} \): \(t \) is a set of at least \(k \) vertices; \(B \) checks that no pair of these vertices are connected by an edge.
- \(\text{Set Cover} \in \mathsf{NP} \):
\(\mathcal{NP}\)

- \(\mathcal{NP}\) is the set of all problems for which there exists an efficient certifier.
- \(3\text{-SAT} \in \mathcal{NP}\): \(t\) is a truth assignment; \(B\) evaluates the clauses with respect to the assignment.
- \(\text{Independent Set} \in \mathcal{NP}\): \(t\) is a set of at least \(k\) vertices; \(B\) checks that no pair of these vertices are connected by an edge.
- \(\text{Set Cover} \in \mathcal{NP}\): \(t\) is a list of \(k\) sets from the collection; \(B\) checks if their union is \(U\).
\(\mathcal{NP} \)

- \(\mathcal{NP} \) is the set of all problems for which there exists an efficient certifier.
- \(3\text{-SAT} \in \mathcal{NP} \): \(t \) is a truth assignment; \(B \) evaluates the clauses with respect to the assignment.
- \(\text{Independent Set} \in \mathcal{NP} \): \(t \) is a set of at least \(k \) vertices; \(B \) checks that no pair of these vertices are connected by an edge.
- \(\text{Set Cover} \in \mathcal{NP} \): \(t \) is a list of \(k \) sets from the collection; \(B \) checks if their union is \(U \).
- Proving that a problem is in \(\mathcal{NP} \) is usually quite easy!
Claim: $\mathcal{P} \subseteq \mathcal{NP}$.

Is $\mathcal{P} = \mathcal{NP}$ or is $\mathcal{NP} - \mathcal{P} \neq \emptyset$? One of the major unsolved problems in computer science. $1M prize offered by Clay Mathematics Institute.
P vs. NP

- Claim: $\mathcal{P} \subseteq \mathcal{NP}$.
 - If $X \in \mathcal{P}$, then there is a polynomial time algorithm A that solves X. B ignores t and returns $A(s)$. Why is B an efficient certifier?

Diagram:

- \mathcal{P} is a subset of \mathcal{NP}. \mathcal{P} is inside \mathcal{NP}.
\[P \text{ vs. } NP \]

- **Claim:** \(P \subseteq NP \).
 - If \(X \in P \), then there is a polynomial time algorithm \(A \) that solves \(X \). \(B \) ignores \(t \) and returns \(A(s) \). Why is \(B \) an efficient certifier?
- Is \(P = NP \) or is \(NP - P \neq \emptyset \)?
P vs. NP

- Claim: $P \subseteq NP$.
 - If $X \in P$, then there is a polynomial time algorithm A that solves X. B ignores t and returns $A(s)$. Why is B an efficient certifier?
- Is $P = NP$ or is $NP - P \neq \emptyset$? One of the major unsolved problems in computer science. $1M prize offered by Clay Mathematics Institute.
What are the hardest problems in \mathcal{NP}?

A problem X is \mathcal{NP}-Complete if:
1. $X \in \mathcal{NP}$
2. For every problem $Y \in \mathcal{NP}$, $Y \leq_P X$.

A problem X is \mathcal{NP}-Hard if:
1. For every problem $Y \in \mathcal{NP}$, $Y \leq_P X$.

Claim: Suppose X is \mathcal{NP}-Complete. Then $X \in \mathcal{P}$ iff $\mathcal{P} = \mathcal{NP}$.

Corollary: If there is any problem in \mathcal{NP} that cannot be solved in polynomial time, then no \mathcal{NP}-Complete problem can be solved in polynomial time.

Are there any \mathcal{NP}-Complete problems?

- What if two problems X_1 and X_2 in \mathcal{NP} but there is no problem $X \in \mathcal{NP}$ where $X_1 \leq_P X$ and $X_2 \leq_P X$.

- Perhaps there is a sequence of problems X_1, X_2, X_3, \ldots in \mathcal{NP}, each strictly harder than the previous one.
NP-Complete and NP-Hard Problems

What are the hardest problems in \mathcal{NP}?

A problem X is **NP-Complete** if

(i) $X \in \mathcal{NP}$ and
(ii) for every problem $Y \in \mathcal{NP}$, $Y \leq_P X$.

A problem X is **NP-Hard** if

(i) for every problem $Y \in \mathcal{NP}$, $Y \leq_P X$.

Claim: Suppose X is NP-Complete. Then $X \in \mathcal{P}$ iff $\mathcal{P} = \mathcal{NP}$.

Corollary: If there is any problem in \mathcal{NP} that cannot be solved in polynomial time, then no NP-Complete problem can be solved in polynomial time.

Are there any NP-Complete problems?

1. What if two problems X_1 and X_2 in \mathcal{NP} but there is no problem $X \in \mathcal{NP}$ where $X_1 \leq_P X$ and $X_2 \leq_P X$.
2. Perhaps there is a sequence of problems X_1, X_2, X_3, \ldots in \mathcal{NP}, each strictly harder than the previous one.
NP-Complete and NP-Hard Problems

- What are the hardest problems in \(\mathcal{NP} \)?

A problem \(X \) is **NP-Complete** if

(i) \(X \in \mathcal{NP} \) and

(ii) for every problem \(Y \in \mathcal{NP} \), \(Y \leq_P X \).

A problem \(X \) is **NP-Hard** if

(i) for every problem \(Y \in \mathcal{NP} \), \(Y \leq_P X \).

- Claim: Suppose \(X \) is \(\mathcal{NP} \)-Complete. Then \(X \in \mathcal{P} \) iff \(\mathcal{P} = \mathcal{NP} \).

\[\text{NP} \quad \text{NP-hard} \]

\[\mathcal{P} \quad \mathcal{NPC} \]
NP-Complete and NP-Hard Problems

- What are the hardest problems in \(\mathsf{NP} \)?

A problem \(X \) is **NP-Complete** if

1. \(X \in \mathsf{NP} \) and
2. for every problem \(Y \in \mathsf{NP} \), \(Y \leq_{\mathsf{P}} X \).

A problem \(X \) is **NP-Hard** if

1. for every problem \(Y \in \mathsf{NP} \), \(Y \leq_{\mathsf{P}} X \).

- **Claim:** Suppose \(X \) is \(\mathsf{NP} \)-Complete. Then \(X \in \mathsf{P} \) iff \(\mathsf{P} = \mathsf{NP} \).

- **Corollary:** If there is any problem in \(\mathsf{NP} \) that cannot be solved in polynomial time, then no \(\mathsf{NP} \)-Complete problem can be solved in polynomial time.
NP-Complete and NP-Hard Problems

- What are the hardest problems in \(\text{NP} \)?

A problem \(X \) is **NP-Complete** if

1. \(X \in \text{NP} \)
2. For every problem \(Y \in \text{NP} \), \(Y \leq_P X \).

A problem \(X \) is **NP-Hard** if

1. For every problem \(Y \in \text{NP} \), \(Y \leq_P X \).

Claim: Suppose \(X \) is \(\text{NP} \)-Complete. Then \(X \in \mathcal{P} \) iff \(\mathcal{P} = \text{NP} \).

Corollary: If there is any problem in \(\text{NP} \) that cannot be solved in polynomial time, then no \(\text{NP} \)-Complete problem can be solved in polynomial time.

Are there any \(\text{NP} \)-Complete problems?

1. What if two problems \(X_1 \) and \(X_2 \) in \(\text{NP} \) but there is no problem \(X \in \text{NP} \) where \(X_1 \leq_P X \) and \(X_2 \leq_P X \).
2. Perhaps there is a sequence of problems \(X_1, X_2, X_3, \ldots \) in \(\text{NP} \), each strictly harder than the previous one.
Circuit Satisfiability

- **Cook-Levin Theorem**: \textsc{Circuit Satisfiability} is \mathcal{NP}-Complete.
Circuit Satisfiability

- **Cook-Levin Theorem**: Circuit Satisfiability is \(\mathcal{NP} \)-Complete.
- A *circuit* \(K \) is a labelled, directed acyclic graph such that
 1. the *sources* in \(K \) are labelled with constants (0 or 1) or the name of a distinct variable (the *inputs* to the circuit).
 2. every other node is labelled with one Boolean operator \(\wedge, \vee, \) or \(\neg \).
 3. a single node with no outgoing edges represents the *output* of \(K \).

Figure 8.4 A circuit with three inputs, two additional sources that have assigned truth values, and one output.
Circuit Satisfiability

- **Cook-Levin Theorem:** Circuit Satisfiability is NP-Complete.
- A *circuit* K is a labelled, directed acyclic graph such that
 1. the *sources* in K are labelled with constants (0 or 1) or the name of a distinct variable (the *inputs* to the circuit).
 2. every other node is labelled with one Boolean operator \land, \lor, or \neg.
 3. a single node with no outgoing edges represents the *output* of K.

![Circuit Satisfiability Diagram](image)

Circuit Satisfiability

INSTANCE: A circuit K.

QUESTION: Is there a truth assignment to the inputs that causes the output to have value 1?

Figure 8.4 A circuit with three inputs, two additional sources that have assigned truth values, and one output.
Asymmetry of Certification

Definition of efficient certification and \mathcal{NP} is fundamentally asymmetric:

- An input string s is a “yes” instance iff there exists a short string t such that $B(s, t) = \text{yes}$.
- An input string s is a “no” instance iff for all short strings t, $B(s, t) = \text{no}$.

The definition of \mathcal{NP} does not guarantee a short proof for “no” instances.
Asymmetry of Certification

Definition of efficient certification and \mathcal{NP} is fundamentally asymmetric:

- An input string s is a “yes” instance iff there exists a short string t such that $B(s, t) = \text{yes}$.
- An input string s is a “no” instance iff for all short strings t, $B(s, t) = \text{no}$.

The definition of \mathcal{NP} does not guarantee a short proof for “no” instances.
co-\mathcal{NP}

- For a decision problem X, its *complementary problem* \overline{X} is the set of strings s such that $s \in \overline{X}$ iff $s \notin X$.
For a decision problem X, its *complementary problem* \overline{X} is the set of strings s such that $s \in \overline{X}$ iff $s \notin X$.

If $X \in \mathcal{P}$,
co-\(NP\)

- For a decision problem \(X\), its *complementary problem* \(\overline{X}\) is the set of strings \(s\) such that \(s \in \overline{X}\) iff \(s \notin X\).
- If \(X \in P\), then \(\overline{X} \in P\).
For a decision problem X, its *complementary problem* \overline{X} is the set of strings s such that $s \in \overline{X}$ iff $s \notin X$.

- If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$.
- If $X \in \mathcal{NP}$, then is $\overline{X} \in \mathcal{NP}$?
For a decision problem X, its *complementary problem* \overline{X} is the set of strings s such that $s \in \overline{X}$ iff $s \notin X$.

- If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$.
- If $X \in \mathcal{NP}$, then is $\overline{X} \in \mathcal{NP}$? Unclear in general.
- A problem X belongs to the class $\text{co-}\mathcal{NP}$ iff \overline{X} belongs to \mathcal{NP}.
co-\(\mathcal{NP}\)

- For a decision problem \(X\), its *complementary problem* \(\overline{X}\) is the set of strings \(s\) such that \(s \in \overline{X}\) iff \(s \notin X\).
- If \(X \in \mathcal{P}\), then \(\overline{X} \in \mathcal{P}\).
- If \(X \in \mathcal{NP}\), then is \(\overline{X} \in \mathcal{NP}\)? Unclear in general.
- A problem \(X\) belongs to the class *co-\(\mathcal{NP}\)* iff \(\overline{X}\) belongs to \(\mathcal{NP}\).

Open problem: Is \(\mathcal{NP} = \text{co-}\mathcal{NP}\)?
co-NP

- For a decision problem X, its *complementary problem* \overline{X} is the set of strings s such that $s \in \overline{X}$ iff $s \notin X$.
- If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$.
- If $X \in \mathcal{NP}$, then is $\overline{X} \in \mathcal{NP}$? Unclear in general.
- A problem X belongs to the class co-NP iff \overline{X} belongs to \mathcal{NP}.

Open problem: Is $\mathcal{NP} = \text{co-NP}$?

Claim: If $\mathcal{NP} \neq \text{co-NP}$ then $\mathcal{P} \neq \mathcal{NP}$.
Good Characterisations: the Class $\mathcal{NP} \cap \text{co-}\mathcal{NP}$

- If a problem belongs to both \mathcal{NP} and co-\mathcal{NP}, then
 - When the answer is yes, there is a short proof.
 - When the answer is no, there is a short proof.
Good Characterisations: the Class $\mathcal{NP} \cap \text{co-}\mathcal{NP}$

- If a problem belongs to both \mathcal{NP} and co-\mathcal{NP}, then
 - When the answer is yes, there is a short proof.
 - When the answer is no, there is a short proof.

- Problems in $\mathcal{NP} \cap \text{co-}\mathcal{NP}$ have a *good characterisation*.

Example is the problem of determining if a flow network contains a flow of value at least ν, for some given value of ν.

- Yes: construct a flow of value at least ν.
- No: demonstrate a cut with capacity less than ν.

Claim: $\mathcal{P} \subseteq \mathcal{NP} \cap \text{co-}\mathcal{NP}$.

Open problem: Is $\mathcal{P} = \mathcal{NP} \cap \text{co-}\mathcal{NP}$?
Good Characterisations: the Class \(\mathcal{NP} \cap \text{co-} \mathcal{NP} \)

- If a problem belongs to both \(\mathcal{NP} \) and co-\(\mathcal{NP} \), then
 - When the answer is yes, there is a short proof.
 - When the answer is no, there is a short proof.

- Problems in \(\mathcal{NP} \cap \text{co-} \mathcal{NP} \) have a good characterisation.

- Example is the problem of determining if a flow network contains a flow of value at least \(\nu \), for some given value of \(\nu \).
 - Yes: construct a flow of value at least \(\nu \).
 - No: demonstrate a cut with capacity less than \(\nu \).
Good Characterisations: the Class $\mathcal{NP} \cap \text{co-}\mathcal{NP}$

- If a problem belongs to both \mathcal{NP} and $\text{co-}\mathcal{NP}$, then
 - When the answer is yes, there is a short proof.
 - When the answer is no, there is a short proof.

- Problems in $\mathcal{NP} \cap \text{co-}\mathcal{NP}$ have a *good characterisation*.

- Example is the problem of determining if a flow network contains a flow of value at least ν, for some given value of ν.
 - Yes: construct a flow of value at least ν.
 - No: demonstrate a cut with capacity less than ν.

Claim: $\mathcal{P} \subseteq \mathcal{NP} \cap \text{co-}\mathcal{NP}$.
Good Characterisations: the Class $\mathcal{NP} \cap \text{co-}\mathcal{NP}$

- If a problem belongs to both \mathcal{NP} and $\text{co-}\mathcal{NP}$, then
 - When the answer is yes, there is a short proof.
 - When the answer is no, there is a short proof.
- Problems in $\mathcal{NP} \cap \text{co-}\mathcal{NP}$ have a *good characterisation*.
- Example is the problem of determining if a flow network contains a flow of value at least ν, for some given value of ν.
 - Yes: construct a flow of value at least ν.
 - No: demonstrate a cut with capacity less than ν.

Claim: $\mathcal{P} \subseteq \mathcal{NP} \cap \text{co-}\mathcal{NP}$.

Open problem: Is $\mathcal{P} = \mathcal{NP} \cap \text{co-}\mathcal{NP}$?