KLEE: Unassisted and Automatic
Generation of High-Coverage
Tests for Complex Systems
Programs

Presented by Jordan Gillard



A little bit of background




A little bit of background

e Capable of automatically generating high-coverage tests.




A little bit of background

e Capable of automatically generating high-coverage tests.
e The authors use KLEE to generate tests for the GNU Core Utilities
suite.




A little bit of background

Capable of automatically generating high-coverage tests.
e The authors use KLEE to generate tests for the GNU Core Utilities

suite.
e KLEE beats the line coverage of the developers own hand-written

tests.




A little bit of background

Capable of automatically generating high-coverage tests.

e The authors use KLEE to generate tests for the GNU Core Utilities
suite.

e KLEE beats the line coverage of the developers own hand-written
tests.

e KLEE is an effective bug-finding tool.




What is the problem?




What is the problem?

e Many types of errors are difficult to test.




What is the problem?

e Many types of errors are difficult to test.
e Researchers doubt that automatic test generation tools like KLEE can
consistently work with real applications.




What is the problem?

Many types of errors are difficult to test.
e Researchers doubt that automatic test generation tools like KLEE can
consistently work with real applications.

e Concerns:
o  Number of paths through code grows exponentially




What is the problem?

Many types of errors are difficult to test.
e Researchers doubt that automatic test generation tools like KLEE can
consistently work with real applications.

e Concerns:
o  Number of paths through code grows exponentially
o Dealing with code that interacts with the surrounding environment




What technique is proposed?




What technique is proposed?

e Researchers present KLEE - a new symbolic execution tool.




What technique is proposed?

e Researchers present KLEE - a new symbolic execution tool.
e Researchers show that KLEE performs well on real
environmentally-intensive programs.




Intro continued




Intro continued

e KLEE gets high coverage on a broad set of problems.




Intro continued

e KLEE gets high coverage on a broad set of problems.
e KLEE gets significantly better line-coverage than years of
developer-made tests.




Intro continued

KLEE gets high coverage on a broad set of problems.

e KLEE gets significantly better line-coverage than years of
developer-made tests.

e KLEE works out of the box.




Intro continued

KLEE gets high coverage on a broad set of problems.

e KLEE gets significantly better line-coverage than years of
developer-made tests.
KLEE works out of the box.

e KLEE finds serious bugs.




Intro continued

KLEE gets high coverage on a broad set of problems.
e KLEE gets significantly better line-coverage than years of
developer-made tests.
KLEE works out of the box.
e KLEE finds serious bugs.
KLEE runs on the raw version of the code.




Intro continued

KLEE gets high coverage on a broad set of problems.
KLEE gets significantly better line-coverage than years of
developer-made tests.

KLEE works out of the box.

KLEE finds serious bugs.

KLEE runs on the raw version of the code.

KLEE is not limited to low-level errors.




Intro continued

KLEE gets high coverage on a broad set of problems.
KLEE gets significantly better line-coverage than years of
developer-made tests.

KLEE works out of the box.

KLEE finds serious bugs.

KLEE runs on the raw version of the code.

KLEE is not limited to low-level errors.

KLEE works with non-application code.




Overview




Overview

e Complexity




: void expand(char *arg, unsigned char *buffer) {
int i, ac;
while (*arg) {
if (farg == ' \\") {
arg++;
i=ac=0;
if (farg >= 0’ && *arg <= '7") {
do {
ac = (ac << 3) + *arg++ — '0’;
i++;
} while (i<4 && *arg>=’'0’ && *arg<='7');
*buffer++ = ac;
} else if (*farg = " \0’)
*buffer++ = *arg++;
else if (*farg == ' [’) {
arg++;
1= *arg++;
if (farg++ 1= 7-7) {
*buffer++ = ’ [’;
arg —= 2;
continue;
}
ac = *arg++;
while (i <= ac) *buffer++ = i++;
arg++; /% Skip ']’ */
else
*buffer++ = *arg++;

©CoOoNOOOAWN =

: int main(int argc, char* argv[]) {
int index = 1;
if (argc > 1 && argv[index][0] == " -’) {

}

expand(argv[index++], index);




Overview

e Complexity
e Environmental Dependencies




Overview Con’t




Overview Con’t

e Hit every line of executable code in the program.




Overview Con’t

e Hit every line of executable code in the program.
e Detect at each line potential dangerous operations.




KLEE Architecture




KLEE Architecture

e Core of KLEE is an interpreter loop




KLEE Architecture

e Core of KLEE is an interpreter loop
e KLEE branches out to handle different conditions, and clones its state.




KLEE Architecture

e Core of KLEE is an interpreter loop
e KLEE branches out to handle different conditions, and clones its state.
KLEE has a unique way of handling state.




KLEE Architecture

Core of KLEE is an interpreter loop

KLEE branches out to handle different conditions, and clones its state.
KLEE has a unique way of handling state.

KLEE optimizes queries.




Effectiveness of Optimizations




Effectiveness of Optimizations

Opiimizations || Queries | Time () | STP Time ()

None
Independence
Cex. Cache
All

Table 1: Performance comparison of KLEE’s solver optimiza-
tions on COREUTILS. Each tool is run for 5 minutes without
optimization, and rerun on the same workload with the given
optimizations. The results are averaged across all applications.




Environment Modeling




Environment Modeling

e Authors created simple models for 40 system calls.




Environment Modeling

e Authors created simple models for 40 system calls.
e Example 1. Modeling the file system




Environment Modeling

e Authors created simple models for 40 system calls.
e Example 1. Modeling the file system
e Failing system calls




Evaluation




Evaluation

e Line coverage as measure of KLEE test case effectiveness.




Evaluation

e Line coverage as measure of KLEE test case effectiveness.
e KLEE minimizes the number of generated test cases.




KLEE Performance - GNU Coreutils




KLEE Performance - GNU Coreutils

Executable Lines of Code

Figure 4: Histogram showing the number of COREUTILS
tools that have a given number of executable lines of code
(ELOC).




KLEE Performance - GNU Coreutils

COREUTILS BUSYBOX

Coverage KLEE Devel KLEE Devel
ot
— 0% | 16 | 1 [ 31 [ 4 |
_90100% || 40 | 6 | 2 | 3 |
—090% || 21 | 20 | 10 | 15 |
—080% | 7 | 23 | 5 | 6 |
% | 5 | 15 | 2 | 7 |
—se0% || - 10 | - | 4 |
—as0% | - | 6 [ - | - |
—sea% | - | 3 | - | 2 |
| 20-30% || - | 1 | - | 1 |

| 1020% | - | 3 ] - | - |
| 010% || - | U ] - | 30 |

Overall cov. || 84.5% | 67.7% || 90.5% | 44.8% |
Med cov/App || 94.7% | 72.5% || 97.5% | 58.9% |
Ave cov/App || 90.9% | 68.4% || 93.5% | 43.1% |




KLEE Performance - GNU Coreutils

X
(@]
o
—
S
i
=
&
=
w
>
3]
€3]
5|
R4

—100% 1 25 50 75

Figure 6: Relative coverage difference between KLEE and
the COREUTILS manual test suite, computed by subtracting
the executable lines of code covered by manual tests (L,qn)
from KLEE tests (L) and dividing by the total possible:
(Lkiee — Lman)/Ltotai- Higher bars are better for KLEE,
which beats manual testing on all but 9 applications, often
significantly.




KLEE as a bug finder




KLEE as a bug finder

paste -d\\ abcdefghijklmnopgrstuvwxyz
pr —e EZJEXL

Eade -~ E3.EXE T3:LxC

mkdir -Z a b

mkfifo -Z a b

mknod -Z a b p

md5sum -c tl.txt

ptx -F\\ abcdefghijklmnopgrstuvwxyz
ptx x t4.txt
seq -f %0 1

¥ W\E \VEMDS ("
: "\b\b\b\b\b\b\b\t"
P I\

- lla"




KLEE tests vs random tests




KLEE tests vs random tests

Il KLEE

1 Random @@ Devel




KLEE usage on BusyBox Ultilities




KLEE usage on BusyBox Ultilities

e Researchers ran KLEE on the 75 utilities that make up BusyBox’s
coreutils - with great success.




KLEE usage on BusyBox Ultilities

e Researchers ran KLEE on the 75 utilities that make up BusyBox’s
coreutils - with great success.
e Researchers used KLEE to find bugs in BusyBox.




Related Work




Related Work

e Other symbolic execution frameworks do not interact with the
environment.




Related Work

e Other symbolic execution frameworks do not interact with the
environment.
e More recent tools can interact with the environment but are limited.




Related Work

e Other symbolic execution frameworks do not interact with the
environment.

e More recent tools can interact with the environment but are limited.

e More related work is interested in the path-explosion problem.




Concluding Remarks




Discussion




