
KLEE: Unassisted and Automatic 
Generation of High-Coverage 
Tests for Complex Systems 
Programs

Presented by Jordan Gillard



A little bit of background



A little bit of background
● Capable of automatically generating high-coverage tests.



A little bit of background
● Capable of automatically generating high-coverage tests.
● The authors use KLEE to generate tests for the GNU Core Utilities 

suite.



A little bit of background
● Capable of automatically generating high-coverage tests.
● The authors use KLEE to generate tests for the GNU Core Utilities 

suite.
● KLEE beats the line coverage of the developers own hand-written 

tests.



A little bit of background
● Capable of automatically generating high-coverage tests.
● The authors use KLEE to generate tests for the GNU Core Utilities 

suite.
● KLEE beats the line coverage of the developers own hand-written 

tests.
● KLEE is an effective bug-finding tool.



What is the problem?



What is the problem?
● Many types of errors are difficult to test.



What is the problem?
● Many types of errors are difficult to test.
● Researchers doubt that automatic test generation tools like KLEE can 

consistently work with real applications.



What is the problem?
● Many types of errors are difficult to test.
● Researchers doubt that automatic test generation tools like KLEE can 

consistently work with real applications.
● Concerns:

○ Number of paths through code grows exponentially



What is the problem?
● Many types of errors are difficult to test.
● Researchers doubt that automatic test generation tools like KLEE can 

consistently work with real applications.
● Concerns:

○ Number of paths through code grows exponentially
○ Dealing with code that interacts with the surrounding environment



What technique is proposed?



What technique is proposed?
● Researchers present KLEE - a new symbolic execution tool.



What technique is proposed?
● Researchers present KLEE - a new symbolic execution tool.
● Researchers show that KLEE performs well on real 

environmentally-intensive programs.



Intro continued



Intro continued
● KLEE gets high coverage on a broad set of problems.



Intro continued
● KLEE gets high coverage on a broad set of problems.
● KLEE gets significantly better line-coverage than years of 

developer-made tests.



Intro continued
● KLEE gets high coverage on a broad set of problems.
● KLEE gets significantly better line-coverage than years of 

developer-made tests.
● KLEE works out of the box.



Intro continued
● KLEE gets high coverage on a broad set of problems.
● KLEE gets significantly better line-coverage than years of 

developer-made tests.
● KLEE works out of the box.
● KLEE finds serious bugs.



Intro continued
● KLEE gets high coverage on a broad set of problems.
● KLEE gets significantly better line-coverage than years of 

developer-made tests.
● KLEE works out of the box.
● KLEE finds serious bugs.
● KLEE runs on the raw version of the code.



Intro continued
● KLEE gets high coverage on a broad set of problems.
● KLEE gets significantly better line-coverage than years of 

developer-made tests.
● KLEE works out of the box.
● KLEE finds serious bugs.
● KLEE runs on the raw version of the code.
● KLEE is not limited to low-level errors.



Intro continued
● KLEE gets high coverage on a broad set of problems.
● KLEE gets significantly better line-coverage than years of 

developer-made tests.
● KLEE works out of the box.
● KLEE finds serious bugs.
● KLEE runs on the raw version of the code.
● KLEE is not limited to low-level errors.
● KLEE works with non-application code.



Overview



Overview
● Complexity





Overview
● Complexity
● Environmental Dependencies



Overview Con’t



Overview Con’t
● Hit every line of executable code in the program.



Overview Con’t
● Hit every line of executable code in the program.
● Detect at each line potential dangerous operations.



KLEE Architecture



KLEE Architecture
● Core of KLEE is an interpreter loop



KLEE Architecture
● Core of KLEE is an interpreter loop
● KLEE branches out to handle different conditions, and clones its state.



KLEE Architecture
● Core of KLEE is an interpreter loop
● KLEE branches out to handle different conditions, and clones its state.
● KLEE has a unique way of handling state.



KLEE Architecture
● Core of KLEE is an interpreter loop
● KLEE branches out to handle different conditions, and clones its state.
● KLEE has a unique way of handling state.
● KLEE optimizes queries.



Effectiveness of Optimizations



Effectiveness of Optimizations



Environment Modeling



Environment Modeling
● Authors created simple models for 40 system calls.



Environment Modeling
● Authors created simple models for 40 system calls.
● Example 1: Modeling the file system



Environment Modeling
● Authors created simple models for 40 system calls.
● Example 1: Modeling the file system
● Failing system calls



Evaluation



Evaluation
● Line coverage as measure of KLEE test case effectiveness.



Evaluation
● Line coverage as measure of KLEE test case effectiveness.
● KLEE minimizes the number of generated test cases.



KLEE Performance - GNU Coreutils



KLEE Performance - GNU Coreutils



KLEE Performance - GNU Coreutils



KLEE Performance - GNU Coreutils



KLEE as a bug finder



KLEE as a bug finder



KLEE tests vs random tests



KLEE tests vs random tests



KLEE usage on BusyBox Utilities



KLEE usage on BusyBox Utilities

● Researchers ran KLEE on the 75 utilities that make up BusyBox’s 
coreutils - with great success.



KLEE usage on BusyBox Utilities

● Researchers ran KLEE on the 75 utilities that make up BusyBox’s 
coreutils - with great success.

● Researchers used KLEE to find bugs in BusyBox.



Related Work



Related Work
● Other symbolic execution frameworks do not interact with the 

environment.



Related Work
● Other symbolic execution frameworks do not interact with the 

environment.
● More recent tools can interact with the environment but are limited.



Related Work
● Other symbolic execution frameworks do not interact with the 

environment.
● More recent tools can interact with the environment but are limited.
● More related work is interested in the path-explosion problem.



Concluding Remarks



Discussion


