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INTRODUCTION: PROBLEM STATEMENT AND 
MOTIVATION

• Effective categorization and detection of similar software has become important

• Cross platform software migration

• Reimplementing software with a different programming language

• Drawbacks in current step: very few manually labeled projects, impossible to do so 

by hand

• Solution: Language-Agnostic Software Categorization and similar Application 

Detection (LASCAD)

• Primarily draws upon information retrieval literature, with cross language support



INTRODUCTION: GOALS

Aim

• Transform Source Code Engines like GitHub

• Categorize regardless of documentation

• Boosts research in automatic program repair, security vulnerability detection

• Comparing similar software

Facilities to explore applications/projects directly based on their codebase 

information



RELATED WORK

SOFTWARE DETECTION, CATEGORIZATION, CODE SEARCH, LDA TUNING



PRIOR WORK

• Similar software detection

• Google play “Similar” feature – manual labeling, not perfect at all

• CodeWeb (Michail and Notkin, 1999) - only names, no implementation details

• SSI (Bajracharya et al., 2010), CLAN (McMillan et al., 2012a) – API usage; similar 

invocation of  library APIs; CLANDroid (Linares-Vasques et al., 2016) locates similar 

applications in Android

• RepoPal (Zhang et al., 2017) – similar Github repos based on readme; but very, very 

restrictive

• Similar Tech (Chen et al. 2016) - finding analogical application across languages

• LASCAD – similar software, different languages, any repo, only source code



PRIOR WORK

• Automatic Software Categorization

• JDK API invocation to train ML model (McMillan et al., 2011)

• (State of the Art) MUDABlue (Kawaguchi et al, 2006), LACT (Tian et al, 2009) –

topic modeling; textual relevance of terms in source code

• Rationale: identifiers in code and words in comments used meaningfully indicate similar 

program semantics

• Both produce uncontrollable number of categories, not a desired number of classes

• LASCAD – novel in using LDA and hierarchical clustering, not requiring parameter 

tuning (discussion!), bounded number of classes (discussion!) more disciplined (later)

• Note: Neither was directly available for comparison during evaluation!



PRIOR WORK

• Code Search Tools

• SourceGraph

• Google Code Search,

• Sourcerer

• But nobody retrieves similar applications

• LDA parameter tuning (see theory later)

• Earliest work by Blei et al. (Blei et al., 2003)

• Parameter tuning is challenging – even in source code analysis (Binkley et al., 2014)



BACKGROUND: LDA (SHORT INTRODUCTION)

• Generative statistical modeling – samples are generated from underlying 

distributions which are defined by parameters.

• Widely used, has a lot of advantages

• Idea: A collection of documents has a collection of topics (sometimes more than 

one, Blei and Lafferty, 2009), and words drawn from these topics. The list of 

topics are universally chosen for the collection of topics.

• Input: A collection of documents

• Output: Document-topic and Topic-word matrix.



BACKGROUND: LDA (SHORT INTRODUCTION)

• Example of a generative model for tweets 

and mentioning users, used from Gong et al., 

2015

• As in real life: topics are chosen in 

background distribution;

• A user creates document by choosing a 

topic, and selecting words from that topic; 

and then chooses users to mention based on 

topic



BACKGROUND: HIERARCHICAL CLUSTERING

• Given N objects, group them based on 

similarity : top-down or bottom-up

• N clusters for N objects (in agglomerative) 

– find all pairs of distances

• Each round, combine two closest clusters 

based on linkage criteria to form single 

cluster

• Repeat until desired, choose cutoff for 

distance and number of clusters.



APPROACH

GENERATIVE MODELS, LDA, HIERARCHICAL CLUSTERING, PROCESS FLOW



PHASE 1: SOURCE CODE PREPROCESSING

• Creating the document-term matrix based on 

frequency (number of appearances in a document)

• Step 1: Find words and identifiers

• Step 2: Refining based on language features –

remove stop words, split identifiers: method_name

or methodName -> (method, name)

• Step 3: Remove words below 0.2 and above 0.8 

document frequency



PHASE II: SOFTWARE CATEGORIZATION

• Define parameter t_num (number of topics in LDA, fixed), cat_num (number of 

categories, fixed)

• Steps: perform LDA on document-term matrix to get topic-term and project-

topic matrix, create hierarchical clusters at cat_num, group the projects to get 

project-cluster assignment, get category label by examining



PHASE II: SOFTWARE CATEGORIZATION
STEP 1: LDA

• LDA (Latent Dirichlet Allocation) is performed on the document-term 

matrix to get the parameters for the underlying distribution, estimate the 

following:

• Parameter: number of topics t_num (made transparent)

• Probability of a topic having the certain words/terms in corpus (TT)

• Consider a vector L = {l1,l2,…lm}, with m extracted terms, and ∑li=1

• Probability of a project having certain topics (PT)

• Consider a vector S = {s1,s2,…sm}, with m extracted terms, and ∑si=1

• Excellent reference: the paper by Blei et al., 2003



PHASE II: SOFTWARE CATEGORIZATION
STEP 1: LDA (APPROXIMATE DETAILS)



PHASE II: SOFTWARE CATEGORIZATION
STEP 2: CLUSTERING

• Hierarchical clustering performed to get upto

cat_num clusters

• Metric: Cosine similarity

• Linkage: centroid based:

• Merging clusters bottom, connecting two 

closest clusters at each step.



PHASE II: SOFTWARE CATEGORIZATION
STEP 3: PROJECT-TOPIC MAPPING

• Mapping of terms in topics (latent), clusters on these topics => terms in clusters

• Probability of belonging to the topics

• Next step: find projects belonging to clusters!! (How?)



PHASE II: SOFTWARE CATEGORIZATION
STEP 3: PROJECT-TOPIC MAPPING

• Given: Clusters Cls = {cls1,cls2,…clscat_num}, Each project is S = {s1,s2,…sm}

• Compute project cluster relevance matrix Mij

• The values are normalized per document

• We get the probability of a document to

belong to a cluster!

• Explanation:





PHASE II: SOFTWARE CATEGORIZATION
STEP 4: ASSIGN MANUAL CATEGORIES

• One of the most time consuming steps

• For labeled set of software, use application labels directly

• Otherwise, read the projects in a group and assign a label

• Alternatives suggested (automation):

• Label based on most relevant to topic clusters, and pick terms from these to label 

group

• Use most frequent terms of each topic of cluster clsj to name software group



PHASE III: DETECTING SIMILAR APPLICATIONS

• Users select application from pool

• Existing: vectors of project-cluster similarity, a probability distribution

• Calculate Jensen-Shannon Divergence – similarity of distributions

• Based on very popular KL Divergence

• This one is symmetric, so better suited

• Select projects with highest scores



TOTAL SYSTEM

• Implementation in Python using NLTK, Scikit-Learn for LDA and hierarchical 

clustering, Pandas and Scipy for data preprocessing



EVALUATION

CRITERION, MEASURES, EXPERIMENTS, CASE STUDIES



DATASETS

Name Reference Size Language Labeled Multi-category

MUDABlu

e

Kawaguchi et al., 

2006; 

SourceForge

41 C Yes Yes (13 

categories)

LACT Tian et al., 2009 43 6 languages Yes No (probably) (6 

categories)

New 

Labeled

This paper 103 19 languages Yes No

New 

Unlabeled

This paper 5220 17 languages Yes Unknown



CRITERIA OF MEASUREMENT OF SUCCESS

Source: Kawaguchi et al., 2006; drawn mainly from Information retrieval domain



SOFTWARE CATEGORIZATION EFFECTIVENESS

• Final values: 67% precision, 85% recall, 75% F-score, and 2.33 relDiff (except some cases)
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SOFTWARE CATEGORIZATION EFFECTIVENESS

• Final values: 67% precision, 85% recall, 75% F-score, and 2.33 relDiff (except some cases)

• For each ideal category, finds 2-3 clustered categories



SENSITIVITY TO PARAMETER SETTINGS

• Parameters: t_num (deep) and cat_num (higher 

level)

• Shown that it is not sensitive to parameter 

choice, choose stable parameters 

• cat_num=20

• t_num=50

• Opinion: not the correct way to do it; look at 

clustering distances



COMPARISON WITH PRIOR TOOLS

• MUDABlue and LACT were not available for direct comparison

• MUDABlue could not be implemented; only results compared

• LACT was implemented (but details of verification not specified)

Lascad categorized software stably better than prior approaches on 

different data sets. It allows users to flexibly control the number of generated categories, 

without producing over- whelming numbers of categories as previous tools do. 



SIMILAR APPLICATION DETECTION

• Metric relevance is defined.

• Used the unlabeled projects (5220), 

random 38 projects as queries

• Top 1 relevance – 71%

• Top 5 relevance – 64%

• Used labeled set (103) (completely 

identical for relevance)

• Top 1 relevance – 70%

• Top 5 relevance – 64%

Interesting:

• Random query search – 11%

• Title/Description search – 8.3%

• Readme File search – LDA and similarity 

(RepoPal) – 23% (Top 1) 19% (Top 5)



CONCLUSIONS

• Contributions

• Usable, reliable, language agnostic 

software categorization and similar 

application detection

• First to design based on LDA and 

clustering, removing parameter tuning

• Direct control over number of desired 

categories

• Case studies on failures

• Major Findings

• 67% precision, 85% recall, 75% f-

score, 2.33 relDiff, multiple 

categories for real-world categories

• Not sensitive to t_num variations, 

only for cat_num <= 15

• Categorized better than prior 

approaches, allows flexible control, 

no over-categorization



CONCLUSIONS

Case Study observations and results

• Difference from oracle

• Incompleteness of labels

• Incorrect labels

• Red Herrings – latent features shared,

but different functionalities

• Incorrect retrieval

• Small codebase

• Similar fn.alities, different implementatn.

• Threats to validity

• Unlabeled dataset, no ground truth – open 

to human error – user study?

• Small query size

• LACT reimplementation

• Parameter tuning removed – but…

• Non-sensitive to cat_num, but…useful?

• Underestimate performance due to 

multicategory membership – different 

metric?



DISCUSSION POINTS

• Poorly maintained projects may lack comments and have confusing identifiers

• Topic free word alignment?

• LDA parameter tuning is avoided by hard-coding it – but it is not recommended?

• Fixing? Different way to do this?

• Also, evaluation method – look at cluster distance at cutoff, not just F score

• Only chooses from pool of existing projects to check similarity

• New project arrival? (potentially, recalculate)

• Large scale implementation efficiency (offline and online similarity scoring for rank)

• Only uses code, fails on name – address this?



DISCUSSION POINTS

• Why even topic modeling and clustering, and not smaller number of topics overall?

• Allowing overlaps probably – but alternatives?

• LDA purely doesn’t work as well

• Comments: Evaluation criteria, main theory well founded

• Could use more details of formulation for LDA estimation.

• Tool comparison could be better? (Ask)

• Future direction: directly look at unknown source code and find suggestions for 

porting/similar libraries/plugin for conversion of projects using templates – How?
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