
LASCAD: LANGUAGE-AGNOSTIC

SOFTWARE CATEGORIZATION AND SIMILAR
APPLICATION DETECTION

DOAA ALTARAWY, HOSSAMELDIN SHAHIN, AYAT MOHAMMED, NA MENG

Arinjoy Basak, CS 6704 presentation, March 20th 2019

AN OUTLINE OF THIS PRESENTATION

• Problem Statement

• Related Work

• Approach

• Evaluation

• Conclusion

• Discussion

PROBLEM STATEMENT

INTRODUCTION AND MOTIVATION

INTRODUCTION: PROBLEM STATEMENT AND
MOTIVATION

• Effective categorization and detection of similar software has become important

• Cross platform software migration

• Reimplementing software with a different programming language

• Drawbacks in current step: very few manually labeled projects, impossible to do so

by hand

• Solution: Language-Agnostic Software Categorization and similar Application

Detection (LASCAD)

• Primarily draws upon information retrieval literature, with cross language support

INTRODUCTION: GOALS

Aim

• Transform Source Code Engines like GitHub

• Categorize regardless of documentation

• Boosts research in automatic program repair, security vulnerability detection

• Comparing similar software

Facilities to explore applications/projects directly based on their codebase

information

RELATED WORK

SOFTWARE DETECTION, CATEGORIZATION, CODE SEARCH, LDA TUNING

PRIOR WORK

• Similar software detection

• Google play “Similar” feature – manual labeling, not perfect at all

• CodeWeb (Michail and Notkin, 1999) - only names, no implementation details

• SSI (Bajracharya et al., 2010), CLAN (McMillan et al., 2012a) – API usage; similar

invocation of library APIs; CLANDroid (Linares-Vasques et al., 2016) locates similar

applications in Android

• RepoPal (Zhang et al., 2017) – similar Github repos based on readme; but very, very

restrictive

• Similar Tech (Chen et al. 2016) - finding analogical application across languages

• LASCAD – similar software, different languages, any repo, only source code

PRIOR WORK

• Automatic Software Categorization

• JDK API invocation to train ML model (McMillan et al., 2011)

• (State of the Art) MUDABlue (Kawaguchi et al, 2006), LACT (Tian et al, 2009) –

topic modeling; textual relevance of terms in source code

• Rationale: identifiers in code and words in comments used meaningfully indicate similar

program semantics

• Both produce uncontrollable number of categories, not a desired number of classes

• LASCAD – novel in using LDA and hierarchical clustering, not requiring parameter

tuning (discussion!), bounded number of classes (discussion!) more disciplined (later)

• Note: Neither was directly available for comparison during evaluation!

PRIOR WORK

• Code Search Tools

• SourceGraph

• Google Code Search,

• Sourcerer

• But nobody retrieves similar applications

• LDA parameter tuning (see theory later)

• Earliest work by Blei et al. (Blei et al., 2003)

• Parameter tuning is challenging – even in source code analysis (Binkley et al., 2014)

BACKGROUND: LDA (SHORT INTRODUCTION)

• Generative statistical modeling – samples are generated from underlying

distributions which are defined by parameters.

• Widely used, has a lot of advantages

• Idea: A collection of documents has a collection of topics (sometimes more than

one, Blei and Lafferty, 2009), and words drawn from these topics. The list of

topics are universally chosen for the collection of topics.

• Input: A collection of documents

• Output: Document-topic and Topic-word matrix.

BACKGROUND: LDA (SHORT INTRODUCTION)

• Example of a generative model for tweets

and mentioning users, used from Gong et al.,

2015

• As in real life: topics are chosen in

background distribution;

• A user creates document by choosing a

topic, and selecting words from that topic;

and then chooses users to mention based on

topic

BACKGROUND: HIERARCHICAL CLUSTERING

• Given N objects, group them based on

similarity : top-down or bottom-up

• N clusters for N objects (in agglomerative)

– find all pairs of distances

• Each round, combine two closest clusters

based on linkage criteria to form single

cluster

• Repeat until desired, choose cutoff for

distance and number of clusters.

APPROACH

GENERATIVE MODELS, LDA, HIERARCHICAL CLUSTERING, PROCESS FLOW

PHASE 1: SOURCE CODE PREPROCESSING

• Creating the document-term matrix based on

frequency (number of appearances in a document)

• Step 1: Find words and identifiers

• Step 2: Refining based on language features –

remove stop words, split identifiers: method_name

or methodName -> (method, name)

• Step 3: Remove words below 0.2 and above 0.8

document frequency

PHASE II: SOFTWARE CATEGORIZATION

• Define parameter t_num (number of topics in LDA, fixed), cat_num (number of

categories, fixed)

• Steps: perform LDA on document-term matrix to get topic-term and project-

topic matrix, create hierarchical clusters at cat_num, group the projects to get

project-cluster assignment, get category label by examining

PHASE II: SOFTWARE CATEGORIZATION
STEP 1: LDA

• LDA (Latent Dirichlet Allocation) is performed on the document-term

matrix to get the parameters for the underlying distribution, estimate the

following:

• Parameter: number of topics t_num (made transparent)

• Probability of a topic having the certain words/terms in corpus (TT)

• Consider a vector L = {l1,l2,…lm}, with m extracted terms, and ∑li=1

• Probability of a project having certain topics (PT)

• Consider a vector S = {s1,s2,…sm}, with m extracted terms, and ∑si=1

• Excellent reference: the paper by Blei et al., 2003

PHASE II: SOFTWARE CATEGORIZATION
STEP 1: LDA (APPROXIMATE DETAILS)

PHASE II: SOFTWARE CATEGORIZATION
STEP 2: CLUSTERING

• Hierarchical clustering performed to get upto

cat_num clusters

• Metric: Cosine similarity

• Linkage: centroid based:

• Merging clusters bottom, connecting two

closest clusters at each step.

PHASE II: SOFTWARE CATEGORIZATION
STEP 3: PROJECT-TOPIC MAPPING

• Mapping of terms in topics (latent), clusters on these topics => terms in clusters

• Probability of belonging to the topics

• Next step: find projects belonging to clusters!! (How?)

PHASE II: SOFTWARE CATEGORIZATION
STEP 3: PROJECT-TOPIC MAPPING

• Given: Clusters Cls = {cls1,cls2,…clscat_num}, Each project is S = {s1,s2,…sm}

• Compute project cluster relevance matrix Mij

• The values are normalized per document

• We get the probability of a document to

belong to a cluster!

• Explanation:

PHASE II: SOFTWARE CATEGORIZATION
STEP 4: ASSIGN MANUAL CATEGORIES

• One of the most time consuming steps

• For labeled set of software, use application labels directly

• Otherwise, read the projects in a group and assign a label

• Alternatives suggested (automation):

• Label based on most relevant to topic clusters, and pick terms from these to label

group

• Use most frequent terms of each topic of cluster clsj to name software group

PHASE III: DETECTING SIMILAR APPLICATIONS

• Users select application from pool

• Existing: vectors of project-cluster similarity, a probability distribution

• Calculate Jensen-Shannon Divergence – similarity of distributions

• Based on very popular KL Divergence

• This one is symmetric, so better suited

• Select projects with highest scores

TOTAL SYSTEM

• Implementation in Python using NLTK, Scikit-Learn for LDA and hierarchical

clustering, Pandas and Scipy for data preprocessing

EVALUATION

CRITERION, MEASURES, EXPERIMENTS, CASE STUDIES

DATASETS

Name Reference Size Language Labeled Multi-category

MUDABlu

e

Kawaguchi et al.,

2006;

SourceForge

41 C Yes Yes (13

categories)

LACT Tian et al., 2009 43 6 languages Yes No (probably) (6

categories)

New

Labeled

This paper 103 19 languages Yes No

New

Unlabeled

This paper 5220 17 languages Yes Unknown

CRITERIA OF MEASUREMENT OF SUCCESS

Source: Kawaguchi et al., 2006; drawn mainly from Information retrieval domain

SOFTWARE CATEGORIZATION EFFECTIVENESS

• Final values: 67% precision, 85% recall, 75% F-score, and 2.33 relDiff (except some cases)

SOFTWARE CATEGORIZATION EFFECTIVENESS

• Final values: 67% precision, 85% recall, 75% F-score, and 2.33 relDiff (except some cases)

SOFTWARE CATEGORIZATION EFFECTIVENESS

• Final values: 67% precision, 85% recall, 75% F-score, and 2.33 relDiff (except some cases)

• For each ideal category, finds 2-3 clustered categories

SENSITIVITY TO PARAMETER SETTINGS

• Parameters: t_num (deep) and cat_num (higher

level)

• Shown that it is not sensitive to parameter

choice, choose stable parameters

• cat_num=20

• t_num=50

• Opinion: not the correct way to do it; look at

clustering distances

COMPARISON WITH PRIOR TOOLS

• MUDABlue and LACT were not available for direct comparison

• MUDABlue could not be implemented; only results compared

• LACT was implemented (but details of verification not specified)

Lascad categorized software stably better than prior approaches on

different data sets. It allows users to flexibly control the number of generated categories,

without producing over- whelming numbers of categories as previous tools do.

SIMILAR APPLICATION DETECTION

• Metric relevance is defined.

• Used the unlabeled projects (5220),

random 38 projects as queries

• Top 1 relevance – 71%

• Top 5 relevance – 64%

• Used labeled set (103) (completely

identical for relevance)

• Top 1 relevance – 70%

• Top 5 relevance – 64%

Interesting:

• Random query search – 11%

• Title/Description search – 8.3%

• Readme File search – LDA and similarity

(RepoPal) – 23% (Top 1) 19% (Top 5)

CONCLUSIONS

• Contributions

• Usable, reliable, language agnostic

software categorization and similar

application detection

• First to design based on LDA and

clustering, removing parameter tuning

• Direct control over number of desired

categories

• Case studies on failures

• Major Findings

• 67% precision, 85% recall, 75% f-

score, 2.33 relDiff, multiple

categories for real-world categories

• Not sensitive to t_num variations,

only for cat_num <= 15

• Categorized better than prior

approaches, allows flexible control,

no over-categorization

CONCLUSIONS

Case Study observations and results

• Difference from oracle

• Incompleteness of labels

• Incorrect labels

• Red Herrings – latent features shared,

but different functionalities

• Incorrect retrieval

• Small codebase

• Similar fn.alities, different implementatn.

• Threats to validity

• Unlabeled dataset, no ground truth – open

to human error – user study?

• Small query size

• LACT reimplementation

• Parameter tuning removed – but…

• Non-sensitive to cat_num, but…useful?

• Underestimate performance due to

multicategory membership – different

metric?

DISCUSSION POINTS

• Poorly maintained projects may lack comments and have confusing identifiers

• Topic free word alignment?

• LDA parameter tuning is avoided by hard-coding it – but it is not recommended?

• Fixing? Different way to do this?

• Also, evaluation method – look at cluster distance at cutoff, not just F score

• Only chooses from pool of existing projects to check similarity

• New project arrival? (potentially, recalculate)

• Large scale implementation efficiency (offline and online similarity scoring for rank)

• Only uses code, fails on name – address this?

DISCUSSION POINTS

• Why even topic modeling and clustering, and not smaller number of topics overall?

• Allowing overlaps probably – but alternatives?

• LDA purely doesn’t work as well

• Comments: Evaluation criteria, main theory well founded

• Could use more details of formulation for LDA estimation.

• Tool comparison could be better? (Ask)

• Future direction: directly look at unknown source code and find suggestions for

porting/similar libraries/plugin for conversion of projects using templates – How?

REFERENCES

• Michail, A., Notkin, D., 1999. Assessing software libraries by browsing similar classes, functions and relationships. In: Proceedings of the 21st International Conference on

Software Engineering. ACM, New York, NY, USA, pp. 463–472. doi: 10.1145/302405.302678.

• Bajracharya, S.K. , Ossher, J. , Lopes, C.V. , 2010. Leveraging usage similarity for effective retrieval of examples in code repositories. In: Proceedings of the Eighteenth ACM

SIGSOFT International Symposium on Foundations of Software Engineering.

• McMillan, C. , Grechanik, M. , Poshyvanyk, D. , 2012. Detecting similar software applications. In: Software Engineering (ICSE), 2012 34th International Conference on. IEEE, pp.

364–374.

• Linares-Vásquez, M. , Holtzhauer, A. , Poshyvanyk, D. , 2016. On automatically detecting similar Android apps. In: 2016 IEEE 24th International Conference on Program

Comprehension (ICPC). IEEE, pp. 1–10.

• Zhang, Y., Lo, D., Kochhar, P.S., Xia, X., Li, Q., Sun, J., 2017. Detecting similar repositories on GitHub. In: 2017 IEEE 24th International Conference on Software Analysis,

Evolution and Reengineering (SANER), pp. 13–23. doi: 10.1109/SANER.2017. 7884605.

• Chen, C., Xing, Z., 2016. SimilarTech: Automatically recommend analogical libraries across different programming languages. In: Proceedings of the 31st IEEE/ACM International

Conference on Automated Software Engineering. ACM, New York, NY, USA, pp. 834–839. doi: 10.1145/2970276.2970290.

• Kawaguchi, S. , Garg, P.K. , Matsushita, M. , Inoue, K. , 2006. MUDABlue: An automatic categorization system for open source repositories. J. Syst. Softw. 79 (7), 939–953.

• Tian, K. , Revelle, M. , Poshyvanyk, D. , 2009. Using Latent Dirichlet Allocation for automatic categorization of software. In: Mining Software Repositories, 2009. MSR’09. 6th IEEE

International Working Conference on. IEEE, pp. 163–166.

• Blei, D.M. , Ng, A.Y. , Jordan, M.I. , 2003. Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 .

• Binkley, D. , Heinz, D. , Lawrie, D. , Overfelt, J. , 2014. Understanding lda in source code analysis. In: Proceedings of the 22Nd International Conference on Program

Comprehension. ACM, pp. 26–36 .

• Blei, D. , Lafferty, J. , 2009. Text mining: Classification, clustering, and applications. chapter Topic Models, Chapman & Hall/CRC.

• Y. Gong, Q. Zhang, X. Sun, and X. Huang. Who will you@? In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pages

533–542. ACM, 2015.

