LASCAD: LANGUAGE-AGNOSTIC

SOFTWARE CATEGORIZATION AND SIMILAR
APPLICATION DETECTION

DOAA ALTARAWY, HOSSAMELDIN SHAHIN,AYAT MOHAMMED, NA MENG

Arinjoy Basak, CS 6704 presentation, March 20%" 2019

AN OUTLINE OF THIS PRESENTATION

* Problem Statement
* Related Work

* Approach

* Evaluation

* Conclusion

* Discussion

PROBLEM STATEMENT

INTRODUCTION AND MOTIVATION

INTRODUCTION: PROBLEM STATEMENT AND
MOTIVATION

* Effective categorization and detection of similar software has become important
* Cross platform software migration
* Reimplementing software with a different programming language

* Drawbacks in current step: very few manually labeled projects, impossible to do so
by hand

* Solution: Language-Agnostic Software Categorization and similar Application
Detection (LASCAD)

* Primarily draws upon information retrieval literature, with cross language support

INTRODUCTION: GOALS

Aim
* Transform Source Code Engines like GitHub

* Categorize regardless of documentation

* Boosts research in automatic program repair, security vulnerability detection

* Comparing similar software

Facilities to explore applications/projects directly based on their codebase
information

RELATED WORK

SOFTWARE DETECTION, CATEGORIZATION, CODE SEARCH, LDA TUNING

PRIOR WORK

* Similar software detection

Google play “Similar’ feature — manual labeling, not perfect at all
CodeWeb (Michail and Notkin, 1999) - only names, no implementation details

SSI (Bajracharya et al., 2010), CLAN (McMillan et al., 2012a) — API usage; similar
invocation of library APls; CLANDroid (Linares-Vasques et al.,2016) locates similar
applications in Android

RepoPal (Zhang et al., 2017) — similar Github repos based on readme; but very, very

restrictive

Similar Tech (Chen et al. 2016) - finding analogical application across languages

LASCAD - similar software, different languages, any repo, only source code

......

PRIOR WORK

* Automatic Software Categorization
* JDK APl invocation to train ML model (McMillan et al., 201 [)
* (State of the Art) MUDABIue (Kawaguchi et al,2006), LACT (Tian et al, 2009) —
topic modeling; textual relevance of terms in source code

* Rationale: identifiers in code and words in comments used meaningfully indicate similar

program semantics
* Both produce uncontrollable number of categories, not a desired number of classes

* LASCAD — novel in using LDA and hierarchical clustering, not requiring parameter
tuning (discussion!), bounded number of classes (discussion!) more disciplined (later)

* Note: Neither was directly available for comparison during evaluation!

PRIOR WORK

* Code Search Tools
* SourceGraph
* Google Code Search,

* Sourcerer

¢ But nobody retrieves similar applications

* LDA parameter tuning (see theory later)

* Earliest work by Blei et al. (Blei et al., 2003)

* Parameter tuning is challenging — even in source code analysis (Binkley et al., 2014)

BACKGROUND: LDA (SHORT INTRODUCTION)

Generative statistical modeling — samples are generated from underlying

distributions which are defined by parameters.

Widely used, has a lot of advantages

|dea: A collection of documents has a collection of topics (sometimes more than
one, Blei and Lafferty, 2009), and words drawn from these topics. The list of

topics are universally chosen for the collection of topics.

Input: A collection of documents

Output: Document-topic and Topic-word matrix.

BACKGROUND: LDA (SHORT INTRODUCTION)

Algorithm 1 The generation process of A-TT'M model

* Example of a generative model for tweets for cach topic = € T do
and mentioning users, used from Gong et al., Draw ¢ ~ Dir(B)
for each word w € W do
2015 Draw ¢*" ~ Dir(v)
end for
* As in real life: topics are chosen in end for

for each user v € U: do
for each microblog d € D,: do
Draw #g ~ Dir(.|a)

background distribution;

* A user creates document b)’ ChOOSIﬂg a for each word in microblog d,wm;, € wg: do
topic, and selecting words from that topic; Draw a topic zm ~ Mult(.[6a)
) Draw a word from topic-word distribution wy, ~
and then chooses users to mention based on Mult(.|1h?)
. d for
topic o —
P for each user mentioned in microblog d, an € aq: do
Draw a topic z, ~ Mult(.|04)
Draw a user an ~ p(.|z, wq, ¢*")

end for
end for
end for

BACKGROUND: HIERARCHICAL CLUSTERING

. . Cluster Dendrogram
* Given N obijects, group them based on

similarity : top-down or bottom-up

* N clusters for N objects (in agglomerative)
— find all pairs of distances

10-

* Each round, combine two closest clusters

Height

based on linkage criteria to form single
cluster

Repeat until desired, choose cutoff for

distance and nhumber of clusters.

g9£}9m559.555@9g9@§£
cER58T82G3 £ 3
SS5GET DL

~

APPROACH

GENERATIVE MODELS, LDA, HIERARCHICAL CLUSTERING, PROCESS FLOW

PHASE |: SOURCE CODE PREPROCESSING

* Creating the document-term matrix based on

frequency (number of appearances in a document)

* Step |: Find words and identifiers R Phase |
™, Document-term
.) .
i - Ooen matrix
 Step 2: Refining based on language features — P N
. » source 1 Preprocessing >
remove stop words, split identifiers: method_name | projects,

or methodName -> (method, name)

* Step 3: Remove words below 0.2 and above 0.8

document frequency Fl_’f = %

PHASE |I: SOFTWARE CATEGORIZATION

* Define parameter t_num (number of topics in LDA, fixed), cat_num (number of
categories, fixed)

* Steps: perform LDA on document-term matrix to get topic-term and project-
topic matrix, create hierarchical clusters at cat_num, group the projects to get

project-cluster assignment, get category label by examining

[cat_num
) . Phase Il
Topic-term Topic Project
matrix clusters groups Software
> LDA —> —> H;ﬁ:;:: ;Csl > > ;:f;:g > > f:;i‘?;;’r > categorization
B N F Y results
Project-topic

matrix

PHASE |I: SOFTWARE CATEGORIZATION
STEP I: LDA

* LDA (Latent Dirichlet Allocation) is performed on the document-term
matrix to get the parameters for the underlying distribution, estimate the
following:

* Parameter: number of topics t_num (made transparent)

* Probability of a topic having the certain words/terms in corpus (TT)
* Consider a vector L = {l,l,,...l }, with m extracted terms,and) |.=1

* Probability of a project having certain topics (PT)

* Consider a vector S = {s|,s,,...S .}, with m extracted terms,and } s.=|

* Excellent reference: the paper by Blei et al., 2003

PHASE |I: SOFTWARE CATEGORIZATION
STEP I: LDA (APPROXIMATE DETAILS)

don each fopic 2€T: do
Oreww Y 2~ ()
end. for
Jor ecach puuetde D:de
Draw © ~dwn (/o)
Jor cach weord in d, wm€ wy : dg
Draw o togic 2m~ Mtk (- |©4)
Dhoup awm&ifumwe-ww ksl
meWC ‘;‘ﬁ>

PHASE |I: SOFTWARE CATEGORIZATION
STEP 2: CLUSTERING

Hierarchical clustering performed to get upto

cat num clusters 80
= 0L ____|_ Covheredorciumue=2, | |

* Metric: Cosine similarity 60

L Li m oo o

Cos_Sim;; = ||L-L|I| ﬁi = 21 L g Zg

M T i/ i 1 2 N

* Linkage: centroid based: o

[_[!I”—l-.lljl !Ii'g-l—lljg !I,'m—l—lljm] 10

Cen — 2 3 2 L 2 0

Topic 0O Topic3 Topic4 Topicl Topic 2 Topic 5

Merging clusters bottom, connecting two

closest clusters at each step.

PHASE |I: SOFTWARE CATEGORIZATION
STEP 3: PROJECT-TOPIC MAPPING

* Mapping of terms in topics (latent), clusters on these topics => terms in clusters

* Probability of belonging to the topics

* Next step: find projects belonging to clusters!! (How?)

~
¢ A WH Term-Tweet Matrix
—mm
* Tweet 1
Tweet 1
Tweet 2 Tweet 2 0 1
* Tweet 3 Tweet 3 0

Specify No Themes (k)
Features Matrix Weights Matrix

-nm- _

Theme 1 0.5 Tweet 1
Theme 2 0 0.5 0 Tweet 2 0 al
Tweet 3

P R R PP IV B ——

PHASE |I: SOFTWARE CATEGORIZATION
STEP 3: PROJECT-TOPIC MAPPING

Given: Clusters Cls = {cls,cls,,...cls }, Each project is S = {sl,s2,...sm}

cat_num

[_num

Compute project cluster relevance matrix M, My =3 siby, where

k=1

The values are normalized per document _ _
A 0, if k™ topic does not belong to cls;, or
ki =

* We get the probability of a document to J 1, if k™ topic belongs to cls;

belong to a cluster!

Explanation:

HHHHHH

Mj; = Y sibyj, where

k
b — 0, if k" topic does not belong to cls;, or
kI 7)1, if k" topic belongs to cls;

W\

V\) SL - Ypst} ,Qiy, - g(m‘_}'—> L S.lk':j_

My = 2 ““l‘)I(\LeﬁL&-D 0<’ p(/&,\>
k (TogeBies)
ﬁi‘u‘t"f;‘x o), cinsli ol

" - r\,._: = P(" — ..
7 Nowaioong §i5= {41 1) ?G%_/"“‘V%‘“'ﬁ N

PHASE |I: SOFTWARE CATEGORIZATION
STEP 4: ASSIGN MANUAL CATEGORIES

* One of the most time consuming steps
* For labeled set of software, use application labels directly

* Otherwise, read the projects in a group and assign a label

* Alternatives suggested (automation):

* Label based on most relevant to topic clusters, and pick terms from these to label

group
* Use most frequent terms of each topic of cluster cls; to name software group

PHASE lll: DETECTING SIMILAR APPLICATIONS

Users select application from pool

Existing: vectors of project-cluster similarity, a probability distribution

Calculate Jensen-Shannon Divergence — similarity of distributions
 Based on very popular KL Divergence

 This one is symmetric, so better suited

Select projects with highest scores

) Similarity > Similar application D;:ﬁi;?_d
computing detection .
Project applications
similarity matrix ﬁ Phase I

TOTAL SYSTEM

* Implementation in Python using NLTK, Scikit-Learn for LDA and hierarchical

clustering, Pandas and Scipy for data preprocessing

|—|cat_num
o Phase |) . Phase I
- ™ Document-term Topic-term Topic Project
_— i : clusters groups
Open e fEses Hierarchical Project Category Software
SOUrce :}‘ Preprocegsing > > LDA > —») = = J i = > . >categ0rlza‘n0n
, clustering grouping labeling result
\projects . N A esults
E— Project-topic
matrix
.| Similarity . .| Similar application D;ﬁ;:_d
computing detection o
Project applications
similarity matrix Phase il

query application |_|

EVALUATION

CRITERION, MEASURES, EXPERIMENTS, CASE STUDIES

DATASETS

mm Labeled | Multi-category

MUDABIu Kawaguchi etal,, 4l Yes (13
e 2006; categories)
SourceForge

LACT Tianetal,2009 43 6 languages Yes No (probably) (6
categories)

New This paper 103 19 languages Yes No
Labeled
New This paper 5220 |7 languages Yes Unknown
Unlabeled

CRITERIA OF MEASUREMENT OF SUCCESS

precision = 2_ses Precisionges (s) recall — > sesrecallsyp (s)] _
N S| Fscore — 2% Precision recall
" |C4(5) N Crgear (5)] Ca(5) N Crgeq (5)] ~ precision + recall
precisiong,e, (s) = - recall..r. (s) = . eal \
soft 1Ca(s)] safi‘() [Caea 5)]
el Diff — |#of identified categories — #of ideal categories]|

#of 1deal categories

Source: Kawaguchi et al., 2006; drawn mainly from Information retrieval domain

SOFTWARE CATEGORIZATION EFFECTIVENESS

Data Visualization

Machine Learning

dejs | seldon-server . L
sigma.js i) h20-2
matplotlib - patarm L
: shogun
modestmaps-is [} oryx .
cesium - nupic [} 0.8
chartist-js keras
chroma.js = = neon
kartograph.js mxnet
43 E mahout)
: jubatus [} 0.6
recline datumbox-framework
Leaflet scikit-learn
metrics-graphics | xgboost
arbor i CNTK
SRS Im Decider l 0.4
: MLPNeuralNet
peity ML_for_Hackers]
Chartjs PredictioniO [l =
pygal Ruby-warrior =
envisionjs golearn 0.2
raw i brain
BEMSimpleLineGraph . clfe
S Theano
epoch 1 tensorflow
dimple convnetjs [l 0.0
Qv 0or o0 959030900998 v a(r e 0 LYo L es 998

* Final values: 67% precision, 85% recall, 75% F-score, and 2.33 relDiff (except some cases)

SOFTWARE CATEGORIZATION EFFECTIVENESS

superpowers-core
duality

cocos2d-x

libgdx
jmonkeyengine
turbulenz_engine
godot

MonoGame
panda3d

spring

openage

Dash

GamePlay
OpenRA

GD

xenko
Starling-Framework
Torgue2D
Torque3D
AtomicGameEngine

Game Engine

.

o
-.
n .
l! _l
NVD RO OA G

5359

!9

A,
oy

2

2

r\?

Web Framework

sinatra

spring-framewark

web2py
symfony
flask
pakyow
Codelgniter
cakephp
rails
django
express
derby
laravel
mean
meteor

frappe [

wrvn:vtra@f\a;ca“?

&

o

A

2

9

0

1.0

0.0

* Final values: 67% precision, 85% recall, 75% F-score, and 2.33 relDiff (except some cases)

SOFTWARE CATEGORIZATION EFFECTIVENESS

Text Editor Web Game G
slap [l H hextris
Caret]
vim.js clumsy-bird 0.8
KomodoEdit
sharelatex adarkroom 0.6
s untrusted l
LightTable 0.4
codebox BrowserQuest '
leo-editor]
atom 2048 0.2
brackets ohh1
5
zed 0.0
N‘\z"ab“ob’\%@\?\' 2290 @\/%VL’)CO'\%Q OYL 00290
Category index Category index

* Final values: 67% precision, 85% recall, 75% F-score, and 2.33 relDiff (except some cases)

* For each ideal category, finds 2-3 clustered categories

SENSITIVITY TO PARAMETER SETTINGS

* Parameters: t_num (deep) and cat_num (higher
level)

* Shown that it is not sensitive to parameter

choice, choose stable parameters
* cat_ num=20
* t _num=50

* Opinion: not the correct way to do it; look at
clustering distances

F-score (%)

F-score (%)

100

80

60

40

20

100

80

60

40

20

0

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

of latent topics

—.— — - — —e

5 10 15 20 25 30 35 40 45 50
of categories

COMPARISON WITH PRIOR TOOLS

* MUDABIue and LACT were not available for direct comparison
* MUDABIue could not be implemented; only results compared

* LACT was implemented (but details of verification not specified)

Tool comparison based on MUDAEBIue’s 41 C programs of 13 ideal categories.

Previope tanl TAMM e ratamsarizatinn racnlte an the 1N2_annlication Aagg set

Tool # of categories Precision Recall F-score RelDiff with ¢ Comparing Lascap and LACT's categorization results on - bil
ith t_ 1abil-

MudaBlue 40 - - 7% 5.67 ity in IthF: 103-application data set with approximately similar

LACT 23 76% 65% 70% 2.83 cat_num. -

Lascad categorized software stably better than prior approaches on
different data sets. It allows users to flexibly control the number of generated categories,
without producing over- whelming numbers of categories as previous tools do.

[T I FLT L =T

Tool comparison based on our 103 applications of 6 ideal categories. 70 35 — - 76%]
80 47 1% 45 4%

Tool # of categories Precision Recall F-score RelDiff 90 50 73% 50 76% 7

100 Avg. 68.67% 74.67%)

LACT 38 57% 01% 70% 5.33
Lascap 20 67% 85% 75% 2.33 g

SIMILAR APPLICATION DETECTION

* Metric relevance is defined.

* Used the unlabeled projects (5220),
random 38 projects as queries

e Top | relevance —71%
* Top 5 relevance — 64%
* Used labeled set (103) (completely
identical for relevance)
* Top | relevance — 70%

* Top 5 relevance — 64%

> i1bj
m

1, if a;j is similar, or

I'sr =
! 0, if a; 1s not similar

, Where b; = {
Correspondingly, the overall relevance for the n queries is

it
n

relevance =

Interesting:
* Random query search — | 1%

* Title/Description search — 8.3%

* Readme File search — LDA and similarity
(RepoPal) — 23% (Top) 19% (Top 5)

CONCLUSIONS

* Contributions

* Usable, reliable, language agnostic
software categorization and similar

application detection

* First to design based on LDA and

clustering, removing parameter tuning

* Direct control over humber of desired

categories

* Case studies on failures

* Major Findings
* 67% precision, 85% recall, 75% f-

score, 2.33 relDiff, multiple
categories for real-world categories

* Not sensitive to t _num variations,

only for cat_num <= |5

* Categorized better than prior
approaches, allows flexible control,

no over-categorization

CONCLUSIONS

Case Study observations and results * Threats to validity

e Difference from oracle * Unlabeled dataset, no ground truth — open

to human error — user study?
* Incompleteness of labels

* Small query size
* |ncorrect labels query

, * LACT reimplementation
* Red Herrings — latent features shared, P

but different functionalities s RarameteneininSicaE it

, * Non-sensitive to cat_num, but...useful?
* Incorrect retrieval

* Underestimate performance due to

o Il cod
Small codebase multicategory membership — different

* Similar fn.alities, different implementatn.

metric?

DISCUSSION POINTS

* Poorly maintained projects may lack comments and have confusing identifiers

* Topic free word alignment!?

* LDA parameter tuning is avoided by hard-coding it — but it is not recommended!?

* Fixing? Different way to do this?

* Also, evaluation method — look at cluster distance at cutoff, not just F score

* Only chooses from pool of existing projects to check similarity
* New project arrival? (potentially, recalculate)
* Large scale implementation efficiency (offline and online similarity scoring for rank)

* Only uses code, fails on name — address this?

DISCUSSION POINTS

* Why even topic modeling and clustering, and not smaller number of topics overall?
* Allowing overlaps probably — but alternatives?

* LDA purely doesn’t work as well

¢ Comments: Evaluation criteria, main theory well founded
¢ Could use more details of formulation for LDA estimation.

* Tool comparison could be better? (Ask)

* Future direction: directly look at unknown source code and find suggestions for

porting/similar libraries/plugin for conversion of projects using templates — How?

REFERENCES

e Michail, A., Notkin, D., 1999. Assessing software libraries by browsing similar classes, functions and relationships. In: Proceedings of the 2Ist International Conference on
Software Engineering. ACM, New York, NY, USA, pp. 463—472. doi: 10.1145/302405.302678.

* Bajracharya, S.K., Ossher, ., Lopes, C.V., 2010. Leveraging usage similarity for effective retrieval of examples in code repositories. In: Proceedings of the Eighteenth ACM
SIGSOFT International Symposium on Foundations of Software Engineering.

* McMillan, C., Grechanik, M., Poshyvanyk, D., 2012. Detecting similar software applications. In: Software Engineering (ICSE), 2012 34th International Conference on. IEEE, pp.
364-374.

e Linares-Vasquez, M., Holtzhauer, A., Poshyvanyk, D., 2016. On automatically detecting similar Android apps. In: 2016 IEEE 24th International Conference on Program
Comprehension (ICPC). IEEE, pp. |-10.

* Zhang, Y, Lo, D., Kochhar, P.S., Xia, X., Li, Q., Sun, J., 2017. Detecting similar repositories on GitHub. In: 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pp. 13-23. doi: 10.1 109/SANER.2017. 7884605.

* Chen, C, Xing, Z., 2016. SimilarTech: Automatically recommend analogical libraries across different programming languages. In: Proceedings of the 3 Ist IEEE/ACM International
Conference on Automated Software Engineering. ACM, New York, NY, USA, pp. 834-839. doi: 10.1145/2970276.2970290.

e Kawaguchi, S., Garg, P.K. , Matsushita, M., Inoue, K., 2006. MUDABIue: An automatic categorization system for open source repositories. J. Syst. Softw. 79 (7), 939-953.

* Tian, K., Revelle, M., Poshyvanyk, D., 2009. Using Latent Dirichlet Allocation for automatic categorization of software. In: Mining Software Repositories, 2009. MSR’09. 6th IEEE
International Working Conference on. IEEE, pp. 163—166.

e Blei, D.M., Ng, AY., Jordan, M.I., 2003. Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993-1022 .

¢ Binkley, D., Heinz, D., Lawrie, D., Overfelt, J. , 2014. Understanding Ida in source code analysis. In: Proceedings of the 22Nd International Conference on Program
Comprehension. ACM, pp. 26-36 .

e Blei, D., Lafferty, J. , 2009. Text mining: Classification, clustering, and applications. chapter Topic Models, Chapman & Hall/CRC.

* Y. Gong, Q. Zhang, X. Sun, and X. Huang. Who will you@? In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pages
533-542. ACM, 2015.

s o s S B - [[BRE i 2] LA da A B W N VERER A\ S

