
1/31/19

1

Design Engineering

Overview

• What is software design?
• How to do it?
• Principles, concepts, and practices
• High-level design
• Low-level design

N. Meng, B. Ryder 2

Design Engineering

• The process of making decisions about 
HOW to implement software solutions 
to meet requirements

• Encompasses the set of concepts, 
principles, and practices that lead to 
the development of high-quality systems

N. Meng, B. Ryder 3

Concepts in Software Design

• Modularity
• Cohesion & Coupling
• Information Hiding
• Abstraction & Refinement
• Refactoring

N. Meng, B. Ryder 4

Modularity

• Software is divided into separately 
named and addressable components, 
sometimes called modules, that are 
integrated to satisfy problem 
requirements

• Divide-and-conquer 

N. Meng, B. Ryder 5

Modularity and Software Cost

N. Meng, B. Ryder 6



1/31/19

2

Cohesion & Coupling

• Cohesion
– The degree to which the elements of a module 

belong together
– A cohesive module performs a single task 

requiring little interaction with other modules
• Coupling
– The degree of interdependence between 

modules
• High cohesion and low coupling

N. Meng, B. Ryder 7

Information Hiding

• Do not expose internal information of a 
module unless necessary
– E.g., private fields, getter & setter 

methods

N. Meng, B. Ryder 8

Abstraction & Refinement

• Abstraction
– To manage the complexity of software,
– To anticipate detail variations and future 

changes
• Refinement 
– A top-down design strategy to reveal low-level 

details from high-level abstraction as design 
progresses

N. Meng, B. Ryder 9

Abstraction to Reduce Complexity

• We abstract complexity at different 
levels
– At the highest level, a solution is stated in 

broad terms, such as “process sale”
– At any lower level, a more detailed 

description of the solution is provided, such 
as the internal algorithm of the function 
and data structure

N. Meng, B. Ryder 10

Abstraction to Anticipate Changes

• Define interfaces to leave 
implementation details undecided

• Polymorphism

<<interface>>
ITaxCalculator
getTaxes(…)

TaxMaster TurboTaxTaxBonanza

N. Meng, B. Ryder 11

Software Design Practices Include:

• Two stages
–High-level: Architecture design
• Define major components and their relationship

– Low-level: Detailed design
• Decide classes, interfaces, and implementation 

algorithms for each component

N. Meng, B. Ryder 12



1/31/19

3

How to Do Software Design?

• Reuse or modify existing design models
–High-level: Architectural styles
– Low-level: Design patterns, Refactorings

• Iterative and evolutionary design
– Package diagram
– Detailed class diagram
– Detailed sequence diagram

N. Meng, B. Ryder 13

Software Architecture

• “The architecture of a system is 
comprehensive framework that 
describes its form and structure -- its 
components and how they fit together” 

--Jerrold Grochow

N. Meng, B. Ryder 14

What is Architectural Design?

• Design overall shape & structure of 
system
– the components 
– their externally visible properties
– their relationships 

• Goal: choose architecture to reduce 
risks in SW construction & meet 
requirements 

N. Meng, B. Ryder 15

SW Architectural Styles

• Architecture composed of
– Set of components
– Set of connectors between them
• Communication, co-ordination, co-operation

– Constraints 
• How can components be integrated?

– Semantic models 
• What are the overall properties based on 

understanding of individual component properties?

N. Meng, B. Ryder 16

Architecture Patterns

• Common program structures
– Pipe & Filter Architecture
– Event-based Architecture
– Layered Architecture

N. Meng, B. Ryder 17

Pipe & Filter Architecture

• A pipeline contains a chain of data 
processing elements
– The output of each element is the input of the 

next element
– Usually some amount of buffering is provided 

between consecutive elements

N. Meng, B. Ryder 18

filter
filterfilter

filter

filter

filter

pipe

pipe

pipe
pipe

pipe

pipe

pipe pipe

pipe

Data



1/31/19

4

Example: Optimizing Compiler 

N. Meng, B. Ryder 19

Compiler Optimization
[Engineering a Compiler, K. D. Cooper, L. Torczon]

Compiler Structure

IR

Op
t 1

Op
t 2

Op
t n…

IR

Pros and Cons

• Other examples
– UNIX pipes, signal processors 

• Pros
– Easy to add or remove filters
– Filter pipelines perform multiple operations 

concurrently
• Cons
–Hard to handle errors 
–May need encoding/decoding of input/output 

N. Meng, B. Ryder 20

Event-based Architecture

N. Meng, B. Ryder 21

EventEmitter

EventDispatcher

EventConsumerEventConsumer EventConsumer

event
subscription

• Promotes the production, detection, 
consumption of, and reaction to events

• More like event-driven programming

Example: GUI

N. Meng, B. Ryder 22

Pros and Cons

• Other examples:
– Breakpoint debuggers, phone apps, robotics

• Pros
– Anonymous handlers of events
– Support reuse and evolution, new consumers 

easy to add
• Cons
– Components have no control over order of 

execution

N. Meng, B. Ryder 23

Layered/Tiered Architecture

• Multiple layers are defined to allocate 
responsibilities of a software product

• The communication between layers is 
hierarchical

• Examples: OS, network protocols 

N. Meng, B. Ryder 24

kernalkernel

utilities
application layer

users



1/31/19

5

3-layer Architecture

N. Meng, B. Ryder 25

Data

Presentation

Logic

• Presentation: UI to interact with users
• Logic: coordinate applications and perform 

calculations
• Data: store and retrieve information as 

needed

Example: Online Ordering System

N. Meng, B. Ryder 26

http://www.cardisoft.gr/frontend/article.php?aid=87&cid=96

Model-View-Controller

N. Meng, B. Ryder 27

https://commons.wikimedia.org/wiki/File:MVC_Diagram_(Model-View-Controller).svg
Design of Finite State Machine Drawing Tool

Key Points about MVC

• View layer should not handle system 
events

• Controller layer has the application logic 
to handle events

• Model layer only respond to data 
operation

N. Meng, B. Ryder 28

Layered Architecture: Pros and Cons

• Pros
– Support increasing levels of abstraction 

during design
– Support reuse and enhancement

• Cons
– The performance may degrade 
–Hard to maintain

N. Meng, B. Ryder 29


