
Iterative User-Driven Fault 

Localization
Authors: Xiangyu Li, Marcelo d’Amorim, Alessandro Orso

Presented by Xianhao Jin



Outline

1. Problem Statement

2. Background Knowledge

3. Approach

4. Evaluation

5. Related work

6. Conclusion

7. Discussion



Problem Statement

1. Debugging contributes greatly to software development costs.

2. Existing statistical fault localization techniques are unrealistic.
a. examine a long list

b. recognize faulty lines by simply looking at them

3. There is a disconnect between research and practice.

4. A tool which helps debugging in a natural way is in demand.



Background Knowledge - Ochiai



Problem Statement - Example
SFL Limitation:
Rank Line 18 as the most suspicious, Line 15 

as the least suspicious.



Approach - Four Steps

1. Test Execution.

2. Fault localization.

3. Query Generation.

4. Feedback Incorporation.



Approach - Test Execution

Swift executes the test 

suite for the SUT and 

collects an execution tree 

for each test.



Approach - Fault Localization

Swift leverages existing fault 

localization techniques to 

compute the suspiciousness of 

program entities based on the 

collected runtime information. 



Approach - Query Generation

Swift asks developers for feedback through debugging 

queries, which basically consist of the input and output of a 

method invocation. Developers are expected to assess the 

correctness of the computation for that invocation.



Approach - Feedback Incorporation



Approach - Feedback Incorporation



Approach - Feedback Incorporation



Approach - Complete Debugging Session



Approach - Complete Debugging Session



Approach - Complete Debugging Session



Evaluation

1. Data Set : 26 faults from 5 open-source applications

2. Research Questions:
a. Can Swift locate the fault with a small number of debugging queries?

b. How does user feedback affect fault ranking?



Evaluation – Experimental Setup

1. Apply SWIFT and record the number of queries.

2. Record the query, its answer, and the updated ranking.

3. Use an automated oracle to answer queries.



Evaluation - Result Summary



Evaluation - Result



Evaluation – Effect of Incorporation

1. Assess how effective the updates to the ranking list are 

for guiding the search of the faulty method invocation.

2. Measure the number of queries that would be 

generated if Swift did not update the fault localization 

results using the answers to debugging queries.

3. Start from the beginning of the ranking list, present all 

method invocations, then go to the next statement.



Related Work

Designing the whyline: A debugging interface for 

asking questions about program behavior.

Vida: Visual interactive debugging. 

Interactive fault localization leveraging 

simple user feedback.

A user-guided approach to program 

analysis. 

2004

2009

2012

2015

Differences:

Tool asks questions instead and focus on 

suspicous parts.

Generate user queries at the level of 

abstractions of methods which is more 

likely to be understood.

Ask questions about concrete input-

output pairs and does not rely on 

developers’ ability to assess the 

correctness.

Dynamic rather than static analysis that 

supports debugging rather than bug 

finding.



Conclusion

Swift, a technique that aims to mitigate the existing disconnect 

between research and practice in the area of software 

debugging, and in particular in fault localization. 

Swift operates in an iterative and user-driven fashion. 

This process allows Swift to improve the localization results 

and guide the developer increasingly closer to the fault at 

hand.



Conclusion - Contributions

1. A novel technique that overcomes some of the 

limitations of existing SFL approaches by leveraging 

user feedback in a natural way. 

2. An implementation of our approach for Java programs 

that is publicly available.

3. An empirical 2 evaluation that provides initial evidence 

of the potential usefulness of our approach and 

identifies several directions for future work.



Discussion

1. The idea of interaction with the developers?

2. Select randomly when ties, or other choices?

3. How about accuracy not 100%?

4. Try different fault localization techniques?

5. How much does the technique rely on each step?

6. User study?



Thank you!


