
HireBuild: An Automatic 

Approach to History-Driven 

Repair of Build Scripts
Authors: Foyzul Hassan, Xiaoyin Wang

Presented by Xianhao Jin



Outline

1. Problem Statement

2. Background Knowledge

3. Approach

4. Evaluation

5. Related work

6. Conclusion

7. Discussion



Problem Statement

1. Build tools such as Maven and Gradle are popular.

2. They need maintenance as frequently as source code.

3. Existing work focus on repairing source code.

4. Reparing build scripts has unique challenges:
a. involve open knowledge that do not exist in the current project

b. no test suite

c. the semantics of build scripts is very different from normal programs



Problem Statement - Example

Difference:
1. Possible to find from existing 

scripts or past fixes that we 

need to perform an exclude 

operation, however, “org.slf4j”

is hard to generate.

2. We are able to, and need to 

consider build-specific 

operations.

3. The build log information is 

very important and helpful.



Background Knowledge - Gradle
Gradle is an open-source build automation system that builds upon the concepts 

of Apache Ant and Apache Maven and introduces a Groovy-based domain-

specific language (DSL) instead of the XML form used by Apache Maven for 

declaring the project configuration. 

Gradle uses a directed acyclic graph ("DAG") to determine the order in which 

tasks can be run. 

Gradle was designed for multi-project builds, which can grow to be quite large. It 

supports incremental builds by intelligently determining which parts of the build 

tree are up to date; any task dependent only on those parts does not need to be 

re-executed.



Approach - three steps

1. Log Similarity Calculation to Find Similar Fixes

2. Generation of Build-Fix Patterns 

3. Generation and Validation of Concrete Patches



Approach - Step 1

1. Build Log Parsing (Error-and-exception part).

2. Text Processing. 

3. Similarity Calculation.



Approach - Step 2
1. Build-Script Differencing

2. Hierarchical Build-Fix 

Patterns 

3. Merging of Build-Fix 

Patterns

4. Ranking of Build-Fix 

Patterns



Approach - Step 2
1. Build-Script Differencing

2. Hierarchical Build-Fix 

Patterns

3. Merging of Build-Fix 

Patterns

4. Ranking of Build-Fix 

Patterns



Approach - Step 2
1. Build-Script Differencing

2. Hierarchical Build-Fix 

Patterns 

3. Merging of Build-Fix 

Patterns

4. Ranking of Build-Fix 

Patterns



Approach - Step 2
1. Build-Script Differencing

2. Hierarchical Build-Fix 

Patterns 

3. Merging of Build-Fix 

Patterns

4. Ranking of Build-Fix 

Patterns



Approach - Step 3

1. Which file to apply

2. Where in the file to apply

3. Determine the possible values of the abstract nodes

4. Ranking of generated patches

5. Patch application



Approach - Step 3

1. Which file to apply

2. Where in the file to apply

3. Determine the possible values of the abstract nodes

4. Ranking of generated patches

5. Patch application



Approach - Step 3

1. Which file to apply

2. Where in the file to apply

3. Determine the possible values of the abstract nodes

4. Ranking of generated patches

5. Patch application



Approach - Step 3

1. Which file to apply

2. Where in the file to apply

3. Determine the possible values of the abstract nodes

4. Ranking of generated patches

5. Patch application



Approach - Step 3

1. Which file to apply

2. Where in the file to apply

3. Determine the possible values of the abstract nodes

4. Ranking of generated patches

5. Patch application



Evaluation

1. Data Set : training set 135 + test set 40 (24 reproduced)

2. Research Questions:
a. How many reproducible build failures in the evaluation set can 

HireBuild fix? 

b. How many patches HireBuild generated and tried during the build-

failure fixing?

c. What are the amount of time HireBuild spends to fix a build failure?

d. What are the sizes of build fixes that can be successfully fixed and 

that can not be fixed?

e. What are the reasons behind unsuccessful build-script repair? 



Evaluation - Result

RQ1: Number of successfully fixed build failures.



Evaluation - Result

RQ2: Patch list size.



Evaluation - Result

RQ3: Time Spent on Fixes.



Evaluation - Result

RQ4: Actual Fix Size. 



Evaluation - Result

RQ5: Failing reasons for the rest 13 build failures.



Related Work – Automatic Code Repair
GenProg: A Generic Method for Automatic 

Software Repair.

Automatic Patch Generation Learned from 

Human-written Patches.

The Strength of Random Search on Automated 

Program Repair.

History Driven Program Repair.

Relifix: Automated Repair of Software 

Regressions.

Angelix: Scalable Multiline Program Patch 

Synthesis via Symbolic Analysis.

2012

2013

2014

2015

2016

2016

Difference:

1. Applicable for build 

scripts.

2. Use build failure log 

similarity.

3. Fix candidate lists 

with reasonable size, 

with abstract fix 

template matching.



Related Work – Analysis of Build Files
Dynamically Evolving Concurrent Information 

Systems Specification and Validation.

Design recovery and maintenance of build 

systems. 

An empirical study of build maintenance effort.

Fault Localization for Build Code Errors in 

Makefiles.

SYMake: A Build Code Analysis and 

Refactoring Tool for Makefiles.

GNU Autoconf - Creating Automatic 

Configuration Scripts.

2004

2007

2011

2012

2014

2015

Difference:

1. A different purpose 

(i.e., automatic 

software building).

2. Estimates run-time 

values of string 

variables with 

grammar-based string 

analysis.

3. Analyzes flows of files 

to identify the paths.



Conclusion

1. The first approach for automatic build fix candidate 

patch generation for Gradle build script. 

2. Based on (1) build failure log similarity and historical 

build script fixes, (2) GradleDiff for AST level build script 

change identification, (3) a ranked list of patches.

3. Fix 11 out of 24 reproducible build failures



Conclusion - Contributions

1. A novel approach to automatic patch generation for 

repairing build scripts to resolve software build failures. 

2. A dataset of 175 build fixes which can serve as the 

basis and a benchmark for future research.

3. An empirical evaluation of our approach on the dataset 

of 175 real-world build fixes.

4. An AST diff generation tool for Gradle build scripts.



Discussion

1. The popularity of the problem?

2. Where do selected patches come from? Within Project 

or Cross Project? How about the its ranking?

3. Fix time comparison?

4. How to deal with a build with multiple commits?

5. The threshold of 5? How about a ratio?

6. Complated failures?



Thank you!


