Proactive Detection of Collaboration
Conflicts

Authors: Y. Brun, R. Holmes, M.D. Ernst, D. Notkin

Conference: 19th ACM SIGSOFT symposium & the 13th European conference on
Foundations of Software Engineering, 2011

Presented By: Pronnoy Goswami

Github Repository
B Google Slides Link

https://github.com/brunyuriy/crystalvc

Background

Overview

Problem Statement

Approach

Motivation Behind the Approach

Contributions of the work

Terminology Used

Research Questions and Analysis of the Approach
Related Work

Conclusion

Discussion Questions

References

O o J o0 o o odJ o0 o0 o d

Appendix

What is all the fuss about?

Let’'s gain some background knowledge.

Version Control Systems (VCS)

What is a “version control system”, and why should you care?

Q Version control system (a.k.a, VCS) is a system that records changes to a file or
set of files over time so that you can recall specific versions later

Q Features that a VCS provides:

Allows us to revert selected files back to previous state

Revert the entire project back to a previous state

Compare changes over time

See who last modified something that might be causing a problem
Who introduced an issue and when and more..

ER Ry RN YN

Some commonly used VCS

pq Visual Studio

Team Foundation Server ' |

Visual Studio - Team Foundation SUBVERSION
Git Server

=<~ PERFORCE

Version everything.

mercurial

Plastic SCM

Image Credit: Google Images

Types of VCS

-
oo

Centralised Version Control Distributed Version Control
System (CVCS) System (DVCS)

Image Credit: git-scm

Centralised VCS (CVCS)

O Have a single server that contains all
the versioned files

A Clients check out files from that
central server

Advantages
e Developers are aware to some extent of
what their peers are working on

e Administrators have fine-grained
control over who can do what

Disadvantages
e Single point of failure that the
centralized server represents

Examples - Subversion, Perforce, CVS etc.

Computer A

-

Central VCS Server

Computer B

o«

Version Database

Version 3

Version 2

Version 1

Image Credit: git-scm

Distributed VCS (DVCS)

Q Clients fully mirror the
including its full history.

repository,

3 No single-point of failure as in CVSCs

Advantages
e Can deal pretty well with having several
remote repositories

e Allows you to set up several types of
workflows that aren’t possible in
centralized systems

Disadvantages
e Developers are less aware what their peers
are working on

e Steeper-learning curve

Server Computer

Version Database

Version 3
|
Version 2
|
Version 1

Computer A

o>

Version Database

Version 3
|
Version 2
|
Version 1

Computer B

o>

Version Database

Version 3
|
Version 2
|
Version 1

Image Credit: git-scm

Snapshot of a VCS from a typical project

vO.1 ﬂ Releases
J J
7\
O O

Image Credit: Atlassian

Conflicts

What are conflicts?

A conflict occurs when two different users make
simultaneous, different changes to the same line of
a file.

In this case, the VCS cannot automatically decide
which of the two edits to use (or a combination of
them, or neither!)

Manual intervention is required to resolve the
conflict.

Conflicts are costly!

Real-world example of a merge conflict in a Java project

private static IInstaller Createlnstance(Type type)
return (IInstaller)Activator.CreateInstance(type);

public static IEnumerable<Type> TryGetExportedTypes(this Assembly assembly)

{
try

{
return assembly.GetExportedTypes();

catch (Exception ex)

{

<<<<<<< HEAD

Debug.WriteLine(ex.Message);
Debug.WritelLine(ex.InnerException);
S refS{heads/Featurel

return new Typel[]l { };

Image Credit: blogs.endjin.com

Types of conflicts

Conflicts

Higher-order

Textual conflicts conflicts

Textual Conflicts

Why do they happen?

Q Arise when two developers make inconsistent
changes to the same part of the source code

How VCS handles it?

a VCS allows the first developer to publish changes,
but precludes the second developer from publishing
until the conflict is resolved automatically (by the
VCS) or manually (by a developer)

Impact of textual conflicts?

@ Although they can be costly to resolve but are less
severe

Higher-order Conflicts

Why do they happen?

Q Arise when the VCS can integrate the developers’
textual changes, but the changes are semantically
incompatible and can cause compilation errors, test
failures, or other problems

How VCS handles it?

a One idea can be to integrate the test-suite and
language semantics to run in background and
inform developers about errors

O Any other ideas??

Impact of higher-order conflicts?

a More damaging than textual conflicts

Conflicts are the norm!

lIGTrSABE BOMING

Image Credit: memegenerator.net

Collaborative development can be hampered
Problem Statement when conflicts arise because developers have
inconsistent copies of a shared project.

While working within a team, have you ever made a
mistake while programming and only realized it later?

Mistakes can be related to:

Version Control Issues

Design decision

Code Refactoring

Repeating someone else’s work
API Usage

HpEpERERE

This leads to conflicts and bugs within the project.

Let's look at a scenario..

Scenario comprising two developers, George and Ringo

Shared

Changed Library Used By
G
George Q Q Ringo
Push\A ‘/Dush

Master Repository
Problem: Developers have to
recollect their earlier changes, and
rework on the code to fix the issue

Test Failure; George & Ringo are notified

[0

Few ideas to solve
this problem?

Use an awareness tool, which reports where in the
code base teammates are working

Help developers to make better informed decisions
about how to share changes with the team

Help developers to understand when is the best time
to share changes with the team

Setting norms among developers about the
development practices for a project

Up-skilling developers about the good practices
related to conflict resolution

Simulate the possible actions that a developer
performs on the source code. How?

Limitations of using an awareness tool

O Using an awareness tool may lead to a lot of false-positive warnings

@ Developers might have been exploring some ideas and changes, without ever intending
to share the intermediate changes with his team

a Alot of false warnings can be counter-productive for developers

We have a problem at hand. Solution?

Speculative Analysis approach to the rescue!

Q Inshort, predict the future and analyze it

Qd Unobtrusively provides information about the presence or absence of conflicts in a
continual and accurate way

How does it work?

Q@ Speculatively performs the work and executes the VCS operations in the background on
clones of the program

a It merges the committed codes of two different developers, builds it, and runs its tests in
the background

Motivation behind
the approach

Use the information provided by the speculative

analysis:

a To allow developers make better-informed
decisions about version control issues

Q@ To help developers understand how and when to
share changes

@ Reducing the need for human processing and
reasoning

a Thus, reducing the cost of conflicts in the software

development lifecycle

Speculative Analysis: Workflow

current program

Image Credit: Brun et al.

Speculative Analysis: Workflow

speculate

[

current program

Image Credit: Brun et al.

Speculative Analysis: Workflow

speculate

current program

Image Credit: Brun et al.

Speculative Analysis: Workflow

current program

Image Credit: Brun et al.

Speculative Analysis: Workflow

current program analyze

Image Credit: Brun et al.

Speculative Analysis: Workflow

__| speculate

inform developer

analyze

Image Credit: Brun et al.

Contributions of the Contributions of the work are threefold.

work 1. Analyzed 9 open-source systems and drew
insights about the conflicts between developers’
copies of a project

2. Used information given by speculative analysis,
to reveal important classes of conflicts and offer
advice about addressing them

3. Designed and implement an open-source,
publicly-available tool called Crystal
(http://crystalvc.googlecode.com). It implements
the analyses and unobtrusively presents advice to
developers, to aid them in identifying, managing,
and preventing conflicts

http://crystalvc.googlecode.com

Previous scenario after using the Crystal tool

a The green arrow informs George that his
changes can be published (uploaded) without
conflict to the master repository.

Q The red merge symbol indicates that Ringo’s
changes, if combined with George’s, would
cause a test (“T”) failure.

& Crystal =T

File About

master

Fig: Screenshot of the Crystal tool run by George

Image Credit: Brun et al.

Let's understand some terminology.

Study Design of the
terminology

Q The results of this work are applicable to both CVCS
and DVCS

Q The paper focuses on DVCS to simplify the
presentation

Q Briefly presents accepted DVCS terminology

Q@ Uses those terminologies to infer 7 relationships
between repositories

A typical DVCS snapshot

master
repo

N | RN
repo repo repo
history history
100 100

changeset 102
changeset

changeset

working copy working copy working copy working copy

George’s clone Paul’sclone Ringo’s clone John’s clone

Fig: A DVCS with four clones of a master repository
Image Credit: Brun et al.

Repository Relationships

Researchers have identified 7 relevant relationships that can hold between two repositories
1. SAME: The repositories have the same changesets
2. AHEAD: The repository has a superset of the other repository’s changesets
3. BEHIND: The opposite of AHEAD

4. TEXTUAL X (textual conflict) : The distinct changesets need human intervention as they cannot
be automatically merged by the VCS

5. BUILD X: The repositories can be automatically merged by the VCS, but the resulting merged
code fails to build

6. TEST X: The repositories can be automatically merged by the VCS and the resulting merged
code builds but fails its test suite

7. TEST v : The repositories can be automatically merged by the VCS and the resulting merged
code builds and passes its test suite

Assumption(s) behind the approach

Q When a developer commits code to the VCS, the developer has decided to
share that code with other developers

Q Developers push to and pull from only the master repository

Q@ Developers only make a commit when all their tests pass

Let’'s deep dive into the study & analysis

Dataset

9 open-source projects
3.4 million lines of code

550,000 development versions
analyzed

KNCSL stands for thousands of
non-comment source lines

The version control history ends on
Feb 13, 2010

system KNCSL devs changesets days description

Gallery3 57 24 4,838 437 Web-based photo album
Git 267 27 20,785 1,741 Version control system
Insoshi 173 15 1,316 629 Social networking platform
jQuery 26 23 2,183 1,393 JavaScript library
MaNGOS 643 27 3,511 626 Online game server

Perl5 660 51 34,653 8,061 Programming language
Rails 141 50 12,342 1,875 Web application framework
Samba 1,363 59 58,802 5,001 File and print services
Voldemort 103 22 1,219 375 Structured storage system
Total 3,433 298 138,549 20,138

Fig: Dataset consisting of the 9 subject projects

Image Credit: Brun et al.

Criteria to choose the dataset

9 most active projects on Github
Project has at least 10 developers

Project has at least 1000 changesets

Lo o o

Project is not just a Git copy of a CVC repository. Because, it would not contain sufficient
information to answer the research questions

Research Questions

RQ1: How frequently do conflicts, textual and higher-order, arise across developers’ copies of a
project?

RQ2: How long do conflicts persist?
RQ3: Do clean merges devolve into conflicting changes?

RQ4: What information could developers use to reduce the frequency and duration of conflicts?

Research Question 1
Explores: Frequency of conflicts

copies of a project?

RQ1: How frequently do conflicts, textual and higher-order, arise across developers’

TEXTUALX TEXTUALV
system | merges BUILDX BUILDV
TESTX | TESTV

Git 1,362 (|227 17% |2 1% 53 4% (1,080 79%
Perl5 185(14 8% |7 4% 51 28% | 113 61%
Voldemort 147 25 17%|15 10%|5 3%| 102 69%
Gallery3 458 || 42 9% 416 91%
Insoshi 903 || 23 25% 70 75%
jQuery 15 1 7% 14 93%
MaNGOS 192 (| 81 42% 111 58%
Rails 362 || 51 14% 311 86%
Samba 748 ({100 13% 648 87 %
total 3,562 11564 16% 2,998 84%

integrated their code

Fig: Historical merges. Frequencies with which developers experienced / relationships when they

Image Credit: Brun et al.

RQ1: How frequently do conflicts, textual and higher-order, arise across developers’

copies of a project?

system merges TEXTUALX TEXTUALV

Git 179,249 | 15,965 9% | 163,284 91%
Perl5 7,352 1,290 18% 6,052 82%
Voldemort 4,512 1,534 34% 2,978 66%
Gallery3 6,924 1,262 18% 5,662 82%
Insoshi 1,742 736 42% 1,006 58%
jQuery 74 13 18% 61 82%
MaNGOS 4,967 1,092 22% 3,875 78%
Rails 10,418 2,971 29% 7,447 T1%
Samba 77,683 | 30,635 39% 47,048 61%
total 292,921 | 55,498 19% | 237,423 81%

Fig: Potential early merges. The frequency with which developers would be informed of TEXTUAL X
TEXTUAL v relationships, if they had used Crystal

Image Credit: Brun et al.

RQ1: How frequently do conflicts, textual and higher-order, arise across developers’

copies of a project?

Findings about textual conflicts

O Conflicts are the norm
a Of all the merges, one in six, or 17%, had textual conflicts

@ An unrecognized TEXTUALX between the repositories of two developers may cause
problems

Q Had the developers been using Crystal, it would have informed them about TEXTUAL X
relationship that resulted from 19% of the commits

O Butdoes the TEXTUALV relationship mean that everything is going as planned? Maybe
Not

Interviews with managers portray a serious problem

“The remote guys tend not to commit frequently enough to
get leverage out of our continuous integration builds, even
after prompting. It is a real challenge to know how far out of
sync [the remote teams] are [with the local team] when their
commits are not being merged in regularly.

I want [my developers] to at least initiate a conversation with

the relevant parties when the system says they have, or are
just about to, walk into a conflicting situation. I also want

the system to give them a certain level of trust of other de-
veloper’s changes so that if [a merge] won’t cause a problem,
they should sync up.”

RQ1: How frequently do conflicts, textual and higher-order, arise across developers’

copies of a project?

Findings about higher-order conflicts

Q Analyzed only 3 projects Git, Perl5 and Voldemort. Because, only these had the a
non-trivial test suite that could be run

Q@ 5,355 merges analyzed in 3 projects

@ 76% of merges completed cleanly, 16% resulted in TEXTUALX, 1% resulted in a
BUILD X, and 6% resulted in TEST X

a 33% of the 399 merges that the version control system reported as being a clean merge,
actually were a TEST X or BUILD X conflict

Research Question 2
Explores: Persistence of conflicts

RQ2: How long do conflicts persist?

Study Design

Conflict Conflict
Introduced Resolved

T —— >

Changeset Changeset
(attime =t (at time = t,,
@ g)

Lifespan(conflict) =t - t,
@ Omitted all conflicts between changesets that were never actually merged in the history
Q Omitted all conflicts on dead-end or stale branches

Q Analyzed 4 projects - Gallery3, Insoshi, MaNGOS, and Voldemort. Due, to sheer volume of
the data and computation costs.

RQ2: How long do conflicts persist?

TEXTUALX relationships

system number length (days) length (changesets)
mean stddev median | mean stddev median
Voldemort 39 2577 35.0 8.9 128 164 6

Gallery3 80 3.1 9.4 0.7 7.5 19.7 3
Insoshi 27 11.8 21.2 4.8 94 16.3 3
MaNGOS 58 82 440 1.8 17.6 83.0 3
Total 204 9.8 303 1.6 11.6 969 3

70

65

60

50

A
(e

Frequency

W
(=]

N
(=]

-
o

[0-3min) [3-15min) [15-120 min) [120 min - 9h) [9h - 2d) 2-12d) [12-72d) [72-421d)

Image Credit: Brun et al.

RQ2: How long do conflicts persist?

250

200

Frequency
-
(o]
o

—_
o
o

50

TEXTUALVY relationships

system number

length (days) length (changesets)

mean stddev median | mean stddev median
Voldemort 128 35.0 46.6 7.3 9.7 15.1 3
Gallery3 483 7.1 12.5 1.0 143 30.0 3
Insoshi 87 7.7 13.5 3.7 6.3 8.5 3
MaNGOS 118 2.4 2.1 1.7 5.8 7.1 3
Total 816 11.0 238 1.9 11.5 242 3

239 234

11
1

[0-3min) [3-13min) [13-72 min) [72 min -6.4h) [6.4h - 1.5d) [1.5-7.9d) [7.9-43d) [43-236d)

Image Credit: Brun et al.

Research Question 3

Explores: Escalation of clean merges into conflicts

RQ3: Do clean merges devolve into conflicting changes?

Q Of all conflict relationships (TEXTUAL X, BUILDX, and TEST X), 93% developed from
a TESTV relationship

Q Rest 7% of conflict relationships developed from a BEHIND relationship

Q In other words, in almost every case, both developers had already committed (but not
shared) changes before the conflict developed

a 20% of TESTV relationships resulted into a conflict

Q@ This suggests that what we call “safe merges” are actually at risk of devolving into
conflicts that require human effort to resolve

Research Question 4

Explores: Information about conflicts

RQ4: What information could developers use to reduce the frequency and duration

of conflicts?

Questions Explored to answer RQ4

@ What kind of unexploited information is available from a VCS that is not yet leveraged to
smooth collaboration?

O What information could help the developer make better-informed decisions?

RQ4: What information could developers use to reduce the frequency and duration

of conflicts?

Assumptions

Q Considered all situations with 3 developers. Third developer was used to represent arbitrary
other developers and repository hierarchies

O Limit lookahead to 2 rounds of version control operations. One developer performs one VC
operation and then the other developer may or may not perform one.

RQ4: What information could developers use to reduce the frequency and duration

of conflicts?

Analysis Methodology

O Analyzed a hypothetical global perspective of all version control information across
repositories

Q Then systematically analyzed the above perspective by
Q@ enumerating all possible version control situations or states
@ determining the best course of action for the team
3 identifying what information that decision depended on

Q classifying the advice for the team

RQ4: Local States

The paper describes 5 possible local states.

STATE DESCRIPTION
UNCOMMITTED There are uncommitted changes in the working copy
IN CONFLICT The local repository is in conflict with itself
BUILD FAILURE The repository’s version of the code fails to build
TEST FAILURE The repository’s version of the code builds but fails its test suite
OK The repository’s version of the code builds and passes its test-suite

RQ4: Possible Actions

Given 2 repositories A and B, the relationship between A and B, and local states determine the
possible actions developers can perform.

INITIAL POSSIBLE ACTION(S) FINAL STATE

STATE

SAME Nothing to do SAME
AHEAD Push SAME
BEHIND Pull SAME

TEXTUALX Pull; Push CONFLICT; B will be in TEXTUAL X

BUILD X Pull and Merge; Push BUILD FAILURE; B will be in BUILD X
TEST X Pull and Merge; Push TEST FAILURE; B will be in TEST X
TESTv Pull and Merge; Push AHEAD; B will be in TESTv

RQ4: Guidance

Motivation

O Obtain information about how each action may affect the developer’s state

O Understand how different relationships can help developers make better-informed
decisions

Assumptions

@ Developers perform actions in a tree hierarchy, pushing only to and pulling only from a
parent

Qd Considered information relevant to 2 developers who share a common parent repository

RQ4: Guidance

O Committer: Who made the relevant changes?

O When: Can an action that affects the relationship be performed now, or must it wait until
later?

O Consequences: Will an action, perhaps one on a different repository, affect a relationship?
O Capable: Who can perform an action that changes the relationship?

O Ease: Has anyone made changes that ease resolving an existing conflict

Crystal: A tool for version control advice

Crystal: User Study

Q@ Authors surveyed 50 DVCS users before building Crystal.
a They focused on the following aspects:
O What are their developments habits while working collaboratively?

a Which operating systems, IDEs, VCSs, and programming languages the developers
use?

O What are their habits while working with the VCS like, Git?

Crystal: User Interface

project name

relationships

when and capable

master

)

About
master Paul ngo John
Letitbe

Jeff Bob

local state

MAction: hg fetch
onsequences: new relationship will be AHEAD
ommiters: George and Tom

committer, consequences, and casg

guidance (mousecover)

Fig: Screenshot of a developers’ (George) view of Crystal

Image Credit: Brun et al.

Crystal: User Interface

1T 1l XA kKR

SAME AHEAD BEHIND TEXTUALX BUILDX TESTX TESTV

Fig: Crystal-Icon Color Scheme

‘ No merging required
‘ Manual merging required
Q Can be automatically merged

Image Credit: Brun et al.

Crystal: Features

L o od od o0 oo

Developed on Java

Allows developers to select the repositories they want

Provides information about relationships with developers even if they are not using it
Allows developers to execute a subset of the tests related to their feature

At that time, Crystal worked with Mercurial DVCS

Available for Windows, Mac OS, and Linux distributions

Crystal: Beta Testing

Q Betaversion tested by a small number of developers
Q Tested on Windows, MacOS X, and many Linux distributions

@ One co-author used Crystal to monitor 49 clones of 10 projects that belonged to 8 actively
working developers

a Received frequent feedback from the users

Q Incorporated the feedback into Crystal

Let's explore some related works

Related Work

Dewayne et al.[5] show that as the parallel work
increases the number of defects in the software rises.

Grinter et al[3]. reveal that developers avoid parallel
work to avoid conflict resolution while committing code.

Palantir(7], shows which developers are changing which
artifacts and by how much.

FASTDash(1], gives a spatial representation of which files
each developer is editing.

Syde[4], reduces false positives using fine-grained
analysis of the ASTs

CollabVS[8] detects a potential conflict between
dependent program elements

Safe-commit[2] performs deepest analysis by identifying
changes that are guaranteed not to cause test-failure

Let’'s summarize!

Conclusion

Speculative analysis over version control operations
provides accurate information about conflicts

Conflicts are very frequent within collaborative teams

In the dataset, 16% of all merges require human effort
to resolve textual conflict

33% of merges that were reported as “safe merges”
actually contained higher-order conflicts

On average conflicts persist for 10 days. With a median
conflict persisting 1.6 days

Crystal, a speculative analysis tool provides accurate
information and advice about pending conflicts
unobtrusively

Collaborative development is important but
troublesome

Penny for your thoughts!

Discussion Questions

O Canthe dataset generalize well to other projects? Could they have selected more projects that
have a non-trivial test-suite?

@ Could they have performed a larger user study during Beta Testing with detailed analysis of
the user feedback?

O Does Crystal actually increases developer productivity or distracts them? Should we see the
actual adoption rate of Crystal using a user study?

Q Since, Crystal runs on a developers’ local machine. Do you think that some analysis on the
computational cost and memory usage could have been provided?

O Projects using a DVCS have lots of branches. Any ideas on how will Crystal handle branching?

@ VCS history informs us about the TEXTUALX and TEXTUALv relationship. Any ideas how to
handle other relationships?

O Will the collaborative development habit of a developer vary between DVCS and CVCS? If yes,
then any ideas how will Crystal handle it?

Current State-of-the-art

Real Time Collaboration in Microsoft VS Code

Video Credit: code.visualstudio.com

http://www.youtube.com/watch?v=BoHuTm--D0E

References

1. Jacob T. Biehl, Mary Czerwinski, Greg Smith, and George G. Robertson. FASTDash: A visual dashboard for
fostering awareness in software teams. In CHI, pages 1313—1322, San Jose, CA, USA, Apr. 2007.

2. Jan Wloka, Barbara Ryder, Frank Tip, and Xiaoxia Ren. Safe-commit analysis to facilitate team software
development. In ICSE, pages 507517, Vancouver, BC, Canada, May 2009.

3. Rebecca E. Grinter. Using a configuration management tool to coordinate software development. In CoOCS, pages
168-177, Milpitas, CA, USA, Aug. 1995.

4. Lile Hattori and Michele Lanza. Syde: A tool for collaborative software development. In ICSE Tool Demo, pages
235— 238, Cape Town, South Africa, May 2010.

5. Dewayne E. Perry, Harvey P. Siy, and Lawrence G. Votta. Parallel changes in large-scale software development: an
observational case study. ACM TOSEM, 10:308-337, July 2001.

6. Anita Sarma. A survey of collaborative tools in software development. Technical Report UCI-ISR-05-3,
University of California, Irvine, Institute for Software Research, 2005.

7. Anita Sarma, Zahra Noroozi, and André van der Hoek. Palantir: raising awareness among configuration
management workspaces. In ICSE, pages 444— 454, Portland, OR, May 2003.

8. Prasun Dewan and Rajesh Hegde. Semi-synchronous conflict detection and resolution in asynchronous software
development. In ECSCW, pages 159—178, Limerick, Ireland, Sep. 2007.

Thank You!

Appendix

Appendix: Stale Branches

Stale branches

initial-setup Updated 2 years ago by des-des

authentication Updated 2 years ago by des-des

backup-on-install Updated 9 months ago by SimonLab

oauth Updated 8 months ago by RobStallion

N
(=]

i) New pull request

i) New pull request

i) New pull request

i) New pull request

Appendix: Git Blame

atom / .travis.yml &

Newer HEEER Older
[BE) 100644 63 lines (53 sloc) 1.26 KB Raw Normal view History
. 2 2 years ago 1 git:
depth: 10
’ Only trigger branch builds on master... 5 months ago ! branches:
only:
- master

- /7[0-9.]+-releases$/

. Fix janky .travis.yml config 2 years ago } matrix:

. Explicitly define build matrix 2 years ago 10 include:

. wip 2 years ago] - 0s: linux

J Update Travis manifest to use libsecr... 4 months ago 12 dist: trusty

Revert "Use a more recent c++ toolc... 2 months ago 13 env: NODE_VERSION=6.9.4 DISPLAY=:99.0 CC=clang CXX=clang++ npm_config_clang=1
@ Exclude core and p ge specs on ... 2 years ago

\j Update Travis manifest to use libsecr... 4 months ago] sudo: required

. Switch to containerized infrastructure 2 years ago

' Run main process tests on Linux a year ago 17 before_install:

- "/sbin/start-stop-daemon --start --quiet --pidfile /tmp/custom_xvfb_99.pid --make-pidfile --background --exec /usr/bin/Xvfb -- :9

Appendix: Crystal Github Repo

L brunyuriy / crystalve Owatchv 3 Hkstar 4 YFork 5

<> Code 1) Issues 21 1) Pull requests o I'll Projects o EE Wiki lili Insights

Automatically exported from code.google.com/p/crystalvc

D 672 commits ¥ 1 branch © 0 releases 42 4 contributors & View license
Branch: master v New pull request Create new file ~ Upload files Find File
. brunyuriy added a linces Latest commit 2275e69 on Jul 23, 2015
B settings Updated comment for all the test classes 7 years ago
B hgkit-src/org/freehg/hgkit Updated comment for all the test classes 7 years ago
I lib-exc Updated comment for all the test classes 7 years ago
i lib Updated comment for all the test classes 7 years ago
[releases added a release 4 years ago
[src/crystal Created git log parser test. And still half way to make crystal grace... 7 years ago
[test-src/crystal Updated HglogParserTest 7 years ago
i testDataFile Updated comment for all the test classes 7 years ago
[webpage Updated comment for all the test classes 7 years ago
B .classpath Updated comment for all the test classes 7 years ago
B fatjar Updated comment for all the test classes 7 years ago
B .gitignore renamed .hgignore to .gitignore 4 years ago
B .project Updated comment for all the test classes 7 years ago
[E) LICENSE.md added a linces 4 years ago
[E) README.md fixed a link 4 years ago
B ToDo.txt Updated comment for all the test classes 7 years ago
& build.xml Updated comment for all the test classes 7 years ago
B coreUpdate.txt Updated comment for all the test classes 7 years ago

[E design.txt Updated comment for all the test classes 7 years ago

Appendix: FASTDash Tool

= FASTDash

/DynaVis
/Documentation /DynaVis

Fig: Three programmers using
FASTDash

Appendix: Syde Tool

@ 200ChangeAlenti0peration) vod

e (NMNM"'MMW

-;a An ider version (159) s wnder edion.

o adechangelentintaystate. AT Console 69 Syde [Scamp 2 UAKI ©- 9 B I B U 3l < (thomas] = 5
s
7EEREZR7 | ot 5 VBUS Level = | ununsonis 1 DefauitBal Game rgesiuemnce 1, INTEIACiONPanel @
MainPanel Gamepane/ arebures jpke - MissileVaus
B Consol 6 e (asicamauiiin, GA% @ 9 B 18 Ulae W[5 G = O)| "
Main Constants Game Ball Default.. Explosi.. FastBall GhostBall Rubber. SlowBall StickyBall UtmBall Bonus Bonuses Level Default.. Double... LasoV... LongVaus Missie... Shorva... |foste

v i} >model
» [J} AbstractChangeAwareResourci 8
» §) v >Bucketjava (lile, @ 16:09 C
» §) v Change java [anja, @ 16:07 CES 14
» [J} ChangeAwareProjectjava 1.17
» [J) ChangeAwareUnitjava 1.23

> D} ChangeAwareUnitWrapper java 1.3

»

>

>

>

[7} Constants java 1.24

) v Developer java [lile, @ 16:08 CEST] 1.9
A1} DeveloperPool java 1.14

[7) FallingChange java 1.2

8 Conflicts View I3

Entity
@ ch.unisilu.sydeserver.notifier.Notifierfacade
® ch.unisi Ju.sydeserver.notifier. NotifierFacade.addCh

{QIO

= u"‘
e -
Author Message
anja An older version (159) is under edition.

) anja An older version (159) is under edition.

ch.unisi.lu.sydeserver.notifier.NotifierFacade. uucnmuumusoummj anja

Enity has been concurrently added/changed, but not

~
An aldar uacelan 168 i undaeadition

® ch.unisi.lu. e orifias L

added /changed, but not committed. Author: an,

dition.)

’58” ExplosionBall - BoxBall

tBall

® chunisu.sydl 49 Enity has been concurre r
g 50 “"Gets a new ChangeAlert for a given user
51 .

* @return ChangeAlert object
o/

public ChangeAlert getChangeAlert(String author, long timestamp)

throws RemoteException {

return new NotifierFacade().getChangeAlert(author, timestamp);

iditien. v
@ = —

Fig: Syde Tool

Appendix: Palantir Tool

"
VISUALIZATION | (VISUALIZATION >
3 X p ‘ -
/ \ ~N
\ EXTRACTOR) < EXTRACTOR
A A
INTERNAL STATE | (\ INTERNAL STATE /\

=y < > —

T SERVICE oo
,,-// \’ \\\
- //{ \\\" =

4 \ N
~ WORKSPACE WRAPPER | WORKSPACE WRAPPER
(il i
. cMcLiENT CM SERVER CM CLIENT

i A i

\ A \
(T i

WORKSPACE REPOSITORY WORKSPACE

A w

Fig: Palantir Tool Architecture

Appendix: Safe-Commit

Tests.test3() Tests test5()
<A.A.bar(> <A€IA.zip0> B.B() <B,B.waff)> Assert.assertEquals()
A.A(A.bar() [A.zip()] [Assert.assertEquals() ‘1’ - ‘1’
CM(7) ' cM(1) ’ AA(B.waff() Assert.assertEquals() ; <B Abaz0>
<AA.zap()> CM(14) <B,A.::al0> <B AvalO> N bazo

Sﬁ -
A.zap() :]

Tests test20 | Bwval) | A.val()

p o - -(cMm(17)) | LO(19)
AA) \ LC@) <B,BV/.bla0> Al
<AA. bar0> <A A foo()> B.B() B bla(LAssert assertEquals)

Assert.assertEquals() CMU5
A baro A fooo v u) i -
CcM(7) i CM(6)) AA(&
' Bal) | Node (Change) added
=~ oM aeaa
i edge .deleted)
2 e

Fig: Call-graph analysis between original and edited versions

