
Proactive Detection of Collaboration
Conflicts

Authors: Y. Brun, R. Holmes, M.D. Ernst, D. Notkin
Conference: 19th ACM SIGSOFT symposium & the 13th European conference on
Foundations of Software Engineering, 2011

Google Slides Link

Github Repository

Presented By: Pronnoy Goswami

https://github.com/brunyuriy/crystalvc

Overview
❏ Background

❏ Problem Statement

❏ Approach

❏ Motivation Behind the Approach

❏ Contributions of the work

❏ Terminology Used

❏ Research Questions and Analysis of the Approach

❏ Related Work

❏ Conclusion

❏ Discussion Questions

❏ References

❏ Appendix

What is all the fuss about?

Let’s gain some background knowledge.

Version Control Systems (VCS)

What is a “version control system”, and why should you care?

❏ Version control system (a.k.a, VCS) is a system that records changes to a file or
set of files over time so that you can recall specific versions later

❏ Features that a VCS provides:
❏ Allows us to revert selected files back to previous state
❏ Revert the entire project back to a previous state
❏ Compare changes over time
❏ See who last modified something that might be causing a problem
❏ Who introduced an issue and when and more..

Some commonly used VCS

Git
Visual Studio - Team Foundation

Server

Plastic SCM
Image Credit: Google Images

Types of VCS

Centralised Version Control
System (CVCS)

Distributed Version Control
System (DVCS)

Image Credit: git-scm

Centralised VCS (CVCS)

❏ Have a single server that contains all
the versioned files

❏ Clients check out files from that
central server

Advantages
● Developers are aware to some extent of

what their peers are working on

● Administrators have fine-grained
control over who can do what

Disadvantages
● Single point of failure that the

centralized server represents

Examples - Subversion, Perforce, CVS etc.

Image Credit: git-scm

Distributed VCS (DVCS)

❏ Clients fully mirror the repository,
including its full history.

❏ No single-point of failure as in CVSCs

Advantages
● Can deal pretty well with having several

remote repositories

● Allows you to set up several types of
workflows that aren’t possible in
centralized systems

Disadvantages
● Developers are less aware what their peers

are working on

● Steeper-learning curve
Image Credit: git-scm

Snapshot of a VCS from a typical project

Releases

Image Credit: Atlassian

Conflicts

What are conflicts?
❏ A conflict occurs when two different users make

simultaneous, different changes to the same line of
a file.

❏ In this case, the VCS cannot automatically decide
which of the two edits to use (or a combination of
them, or neither!)

❏ Manual intervention is required to resolve the
conflict.

❏ Conflicts are costly!

Real-world example of a merge conflict in a Java project

Image Credit: blogs.endjin.com

Types of conflicts

Textual Conflicts Why do they happen?

❏ Arise when two developers make inconsistent
changes to the same part of the source code

How VCS handles it?

❏ VCS allows the first developer to publish changes,
but precludes the second developer from publishing
until the conflict is resolved automatically (by the
VCS) or manually (by a developer)

Impact of textual conflicts?

❏ Although they can be costly to resolve but are less
severe

Higher-order Conflicts Why do they happen?

❏ Arise when the VCS can integrate the developers’
textual changes, but the changes are semantically
incompatible and can cause compilation errors, test
failures, or other problems

How VCS handles it?

❏ One idea can be to integrate the test-suite and
language semantics to run in background and
inform developers about errors

❏ Any other ideas??

Impact of higher-order conflicts?

❏ More damaging than textual conflicts

Conflicts are the norm!

Image Credit: memegenerator.net

Problem Statement
Collaborative development can be hampered
when conflicts arise because developers have
inconsistent copies of a shared project.

While working within a team, have you ever made a
mistake while programming and only realized it later?

Mistakes can be related to:

❏ Version Control Issues
❏ Design decision
❏ Code Refactoring
❏ Repeating someone else’s work
❏ API Usage

This leads to conflicts and bugs within the project.

Let’s look at a scenario..

Scenario comprising two developers, George and Ringo

Push Push

Master Repository

Test Failure; George & Ringo are notified

Problem: Developers have to
recollect their earlier changes, and
rework on the code to fix the issue

Few ideas to solve
this problem?

❏ Use an awareness tool, which reports where in the
code base teammates are working

❏ Help developers to make better informed decisions
about how to share changes with the team

❏ Help developers to understand when is the best time
to share changes with the team

❏ Setting norms among developers about the
development practices for a project

❏ Up-skilling developers about the good practices
related to conflict resolution

❏ Simulate the possible actions that a developer
performs on the source code. How?

Limitations of using an awareness tool

❏ Using an awareness tool may lead to a lot of false-positive warnings

❏ Developers might have been exploring some ideas and changes, without ever intending
to share the intermediate changes with his team

❏ A lot of false warnings can be counter-productive for developers

We have a problem at hand. Solution?

Speculative Analysis approach to the rescue!

❏ In short, predict the future and analyze it

❏ Unobtrusively provides information about the presence or absence of conflicts in a
continual and accurate way

How does it work?

❏ Speculatively performs the work and executes the VCS operations in the background on
clones of the program

❏ It merges the committed codes of two different developers, builds it, and runs its tests in
the background

Motivation behind
the approach

Use the information provided by the speculative
analysis:

❏ To allow developers make better-informed
decisions about version control issues

❏ To help developers understand how and when to
share changes

❏ Reducing the need for human processing and
reasoning

❏ Thus, reducing the cost of conflicts in the software
development lifecycle

Speculative Analysis: Workflow

Image Credit: Brun et al.

Speculative Analysis: Workflow

Image Credit: Brun et al.

Speculative Analysis: Workflow

Image Credit: Brun et al.

Speculative Analysis: Workflow

Image Credit: Brun et al.

Speculative Analysis: Workflow

Image Credit: Brun et al.

Speculative Analysis: Workflow

Image Credit: Brun et al.

Contributions of the
work

Contributions of the work are threefold.

1. Analyzed 9 open-source systems and drew
insights about the conflicts between developers’
copies of a project

2. Used information given by speculative analysis,
to reveal important classes of conflicts and offer
advice about addressing them

3. Designed and implement an open-source,
publicly-available tool called Crystal
(http://crystalvc.googlecode.com). It implements
the analyses and unobtrusively presents advice to
developers, to aid them in identifying, managing,
and preventing conflicts

http://crystalvc.googlecode.com

Previous scenario after using the Crystal tool

❏ The green arrow informs George that his
changes can be published (uploaded) without
conflict to the master repository.

❏ The red merge symbol indicates that Ringo’s
changes, if combined with George’s, would
cause a test (“T”) failure.

Fig: Screenshot of the Crystal tool run by George

Image Credit: Brun et al.

Let’s understand some terminology.

Study Design of the
terminology

❏ The results of this work are applicable to both CVCS
and DVCS

❏ The paper focuses on DVCS to simplify the
presentation

❏ Briefly presents accepted DVCS terminology

❏ Uses those terminologies to infer 7 relationships
between repositories

A typical DVCS snapshot

Fig: A DVCS with four clones of a master repository

changeset
changeset

changeset
changeset

Image Credit: Brun et al.

Repository Relationships

Researchers have identified 7 relevant relationships that can hold between two repositories

1. SAME: The repositories have the same changesets

2. AHEAD: The repository has a superset of the other repository’s changesets

3. BEHIND: The opposite of AHEAD

4. TEXTUAL ㄨ(textual conflict) : The distinct changesets need human intervention as they cannot
be automatically merged by the VCS

5. BUILD ㄨ: The repositories can be automatically merged by the VCS, but the resulting merged
code fails to build

6. TEST ㄨ: The repositories can be automatically merged by the VCS and the resulting merged
code builds but fails its test suite

7. TEST ✓ : The repositories can be automatically merged by the VCS and the resulting merged
code builds and passes its test suite

❏ When a developer commits code to the VCS, the developer has decided to
share that code with other developers

❏ Developers push to and pull from only the master repository

❏ Developers only make a commit when all their tests pass

Assumption(s) behind the approach

Let’s deep dive into the study & analysis

Dataset

❏ 9 open-source projects

❏ 3.4 million lines of code

❏ 550,000 development versions
analyzed

❏ KNCSL stands for thousands of
non-comment source lines

❏ The version control history ends on
Feb 13, 2010

Fig: Dataset consisting of the 9 subject projects

Image Credit: Brun et al.

Criteria to choose the dataset

❏ 9 most active projects on Github

❏ Project has at least 10 developers

❏ Project has at least 1000 changesets

❏ Project is not just a Git copy of a CVC repository. Because, it would not contain sufficient
information to answer the research questions

Research Questions

RQ1: How frequently do conflicts, textual and higher-order, arise across developers’ copies of a
project?

RQ2: How long do conflicts persist?

RQ3: Do clean merges devolve into conflicting changes?

RQ4: What information could developers use to reduce the frequency and duration of conflicts?

Research Question 1
Explores: Frequency of conflicts

RQ1: How frequently do conflicts, textual and higher-order, arise across developers’
copies of a project?

Fig: Historical merges. Frequencies with which developers experienced 4 relationships when they
integrated their code

Image Credit: Brun et al.

RQ1: How frequently do conflicts, textual and higher-order, arise across developers’
copies of a project?

Fig: Potential early merges. The frequency with which developers would be informed of TEXTUALㄨ
TEXTUAL✓ relationships, if they had used Crystal

Image Credit: Brun et al.

RQ1: How frequently do conflicts, textual and higher-order, arise across developers’
copies of a project?

❏ Conflicts are the norm

❏ Of all the merges, one in six, or 17%, had textual conflicts

❏ An unrecognized TEXTUALㄨ between the repositories of two developers may cause
problems

❏ Had the developers been using Crystal, it would have informed them about TEXTUALㄨ
relationship that resulted from 19% of the commits

❏ But does the TEXTUAL✓ relationship mean that everything is going as planned?

Findings about textual conflicts

Maybe
Not

Interviews with managers portray a serious problem

RQ1: How frequently do conflicts, textual and higher-order, arise across developers’
copies of a project?

❏ Analyzed only 3 projects Git, Perl5 and Voldemort. Because, only these had the a
non-trivial test suite that could be run

❏ 5,355 merges analyzed in 3 projects

❏ 76% of merges completed cleanly, 16% resulted in TEXTUALㄨ, 1% resulted in a
BUILDㄨ, and 6% resulted in TESTㄨ

❏ 33% of the 399 merges that the version control system reported as being a clean merge,
actually were a TESTㄨ or BUILDㄨ conflict

Findings about higher-order conflicts

Research Question 2
Explores: Persistence of conflicts

RQ2: How long do conflicts persist?

Study Design

❏ Omitted all conflicts between changesets that were never actually merged in the history

❏ Omitted all conflicts on dead-end or stale branches

❏ Analyzed 4 projects - Gallery3, Insoshi, MaNGOS, and Voldemort. Due, to sheer volume of
the data and computation costs.

Lifespan(conflict) = t2 - t1

RQ2: How long do conflicts persist?

Image Credit: Brun et al.

RQ2: How long do conflicts persist?

Image Credit: Brun et al.

Research Question 3
Explores: Escalation of clean merges into conflicts

RQ3: Do clean merges devolve into conflicting changes?

❏ Of all conflict relationships (TEXTUALㄨ, BUILDㄨ, and TESTㄨ), 93% developed from
a TEST✓ relationship

❏ Rest 7% of conflict relationships developed from a BEHIND relationship

❏ In other words, in almost every case, both developers had already committed (but not
shared) changes before the conflict developed

❏ 20% of TEST✓ relationships resulted into a conflict

❏ This suggests that what we call “safe merges” are actually at risk of devolving into
conflicts that require human effort to resolve

Research Question 4
Explores: Information about conflicts

RQ4: What information could developers use to reduce the frequency and duration
of conflicts?

Questions Explored to answer RQ4

❏ What kind of unexploited information is available from a VCS that is not yet leveraged to
smooth collaboration?

❏ What information could help the developer make better-informed decisions?

RQ4: What information could developers use to reduce the frequency and duration
of conflicts?

Assumptions

❏ Considered all situations with 3 developers. Third developer was used to represent arbitrary
other developers and repository hierarchies

❏ Limit lookahead to 2 rounds of version control operations. One developer performs one VC
operation and then the other developer may or may not perform one.

RQ4: What information could developers use to reduce the frequency and duration
of conflicts?

Analysis Methodology

❏ Analyzed a hypothetical global perspective of all version control information across
repositories

❏ Then systematically analyzed the above perspective by

❏ enumerating all possible version control situations or states

❏ determining the best course of action for the team

❏ identifying what information that decision depended on

❏ classifying the advice for the team

RQ4: Local States

The paper describes 5 possible local states.

STATE DESCRIPTION

UNCOMMITTED There are uncommitted changes in the working copy

IN CONFLICT The local repository is in conflict with itself

BUILD FAILURE The repository’s version of the code fails to build

TEST FAILURE The repository’s version of the code builds but fails its test suite

OK The repository’s version of the code builds and passes its test-suite

RQ4: Possible Actions

Given 2 repositories A and B, the relationship between A and B, and local states determine the
possible actions developers can perform.

INITIAL
STATE

POSSIBLE ACTION(S) FINAL STATE

SAME Nothing to do SAME

AHEAD Push SAME

BEHIND Pull SAME

TEXTUALㄨ Pull; Push CONFLICT; B will be in TEXTUALㄨ

BUILDㄨ Pull and Merge; Push BUILD FAILURE; B will be in BUILDㄨ

TESTㄨ Pull and Merge; Push TEST FAILURE; B will be in TESTㄨ

TEST✓ Pull and Merge; Push AHEAD; B will be in TEST✓

RQ4: Guidance

Motivation

❏ Obtain information about how each action may affect the developer’s state

❏ Understand how different relationships can help developers make better-informed
decisions

Assumptions

❏ Developers perform actions in a tree hierarchy, pushing only to and pulling only from a
parent

❏ Considered information relevant to 2 developers who share a common parent repository

RQ4: Guidance

❏ Committer: Who made the relevant changes?

❏ When: Can an action that affects the relationship be performed now, or must it wait until
later?

❏ Consequences: Will an action, perhaps one on a different repository, affect a relationship?

❏ Capable: Who can perform an action that changes the relationship?

❏ Ease: Has anyone made changes that ease resolving an existing conflict

Crystal: A tool for version control advice

Crystal: User Study

❏ Authors surveyed 50 DVCS users before building Crystal.

❏ They focused on the following aspects:

❏ What are their developments habits while working collaboratively?

❏ Which operating systems, IDEs, VCSs, and programming languages the developers
use?

❏ What are their habits while working with the VCS like, Git?

Crystal: User Interface

Fig: Screenshot of a developers’ (George) view of Crystal
Image Credit: Brun et al.

Crystal: User Interface

Fig: Crystal-Icon Color Scheme

No merging required

Manual merging required

Can be automatically merged

Image Credit: Brun et al.

Crystal: Features

❏ Developed on Java

❏ Allows developers to select the repositories they want

❏ Provides information about relationships with developers even if they are not using it

❏ Allows developers to execute a subset of the tests related to their feature

❏ At that time, Crystal worked with Mercurial DVCS

❏ Available for Windows, Mac OS, and Linux distributions

Crystal: Beta Testing

❏ Beta version tested by a small number of developers

❏ Tested on Windows, MacOS X, and many Linux distributions

❏ One co-author used Crystal to monitor 49 clones of 10 projects that belonged to 8 actively
working developers

❏ Received frequent feedback from the users

❏ Incorporated the feedback into Crystal

Let’s explore some related works

Related Work ❏ Dewayne et al.[5] show that as the parallel work
increases the number of defects in the software rises.

❏ Grinter et al[3]. reveal that developers avoid parallel
work to avoid conflict resolution while committing code.

❏ Palantír[7], shows which developers are changing which
artifacts and by how much.

❏ FASTDash[1], gives a spatial representation of which files
each developer is editing.

❏ Syde[4], reduces false positives using fine-grained
analysis of the ASTs

❏ CollabVS[8] detects a potential conflict between
dependent program elements

❏ Safe-commit[2] performs deepest analysis by identifying
changes that are guaranteed not to cause test-failure

Let’s summarize!

Conclusion
❏ Speculative analysis over version control operations

provides accurate information about conflicts

❏ Conflicts are very frequent within collaborative teams

❏ In the dataset, 16% of all merges require human effort
to resolve textual conflict

❏ 33% of merges that were reported as “safe merges”
actually contained higher-order conflicts

❏ On average conflicts persist for 10 days. With a median
conflict persisting 1.6 days

❏ Crystal, a speculative analysis tool provides accurate
information and advice about pending conflicts
unobtrusively

❏ Collaborative development is important but
troublesome

Penny for your thoughts!

Discussion Questions

❏ Can the dataset generalize well to other projects? Could they have selected more projects that
have a non-trivial test-suite?

❏ Could they have performed a larger user study during Beta Testing with detailed analysis of
the user feedback?

❏ Does Crystal actually increases developer productivity or distracts them? Should we see the
actual adoption rate of Crystal using a user study?

❏ Since, Crystal runs on a developers’ local machine. Do you think that some analysis on the
computational cost and memory usage could have been provided?

❏ Projects using a DVCS have lots of branches. Any ideas on how will Crystal handle branching?

❏ VCS history informs us about the TEXTUALㄨ and TEXTUAL✓ relationship. Any ideas how to
handle other relationships?

❏ Will the collaborative development habit of a developer vary between DVCS and CVCS? If yes,
then any ideas how will Crystal handle it?

Current State-of-the-art

Real Time Collaboration in Microsoft VS Code

Video Credit: code.visualstudio.com

http://www.youtube.com/watch?v=BoHuTm--D0E

References

1. Jacob T. Biehl, Mary Czerwinski, Greg Smith, and George G. Robertson. FASTDash: A visual dashboard for
fostering awareness in software teams. In CHI, pages 1313–1322, San Jose, CA, USA, Apr. 2007.

2. Jan Wloka, Barbara Ryder, Frank Tip, and Xiaoxia Ren. Safe-commit analysis to facilitate team software
development. In ICSE, pages 507–517, Vancouver, BC, Canada, May 2009.

3. Rebecca E. Grinter. Using a configuration management tool to coordinate software development. In CoOCS, pages
168–177, Milpitas, CA, USA, Aug. 1995.

4. Lile Hattori and Michele Lanza. Syde: A tool for collaborative software development. In ICSE Tool Demo, pages
235– 238, Cape Town, South Africa, May 2010.

5. Dewayne E. Perry, Harvey P. Siy, and Lawrence G. Votta. Parallel changes in large-scale software development: an
observational case study. ACM TOSEM, 10:308–337, July 2001.

6. Anita Sarma. A survey of collaborative tools in software development. Technical Report UCI-ISR-05-3,
University of California, Irvine, Institute for Software Research, 2005.

7. Anita Sarma, Zahra Noroozi, and André van der Hoek. Palantír: raising awareness among configuration
management workspaces. In ICSE, pages 444–454, Portland, OR, May 2003.

8. Prasun Dewan and Rajesh Hegde. Semi-synchronous conflict detection and resolution in asynchronous software
development. In ECSCW, pages 159–178, Limerick, Ireland, Sep. 2007.

Thank You!

Appendix

Appendix: Stale Branches

Appendix: Git Blame

Appendix: Crystal Github Repo

Appendix: FASTDash Tool

Fig: Three programmers using
FASTDash

Appendix: Syde Tool

Fig: Syde Tool

Appendix: Palantír Tool

Fig: Palantír Tool Architecture

Appendix: Safe-Commit

Fig: Call-graph analysis between original and edited versions

