
A Graph-based Approach to

API Usage Adaptation

Software Engineering Paper Presentation

- Kanagaraj Nachimuthu Nallasamy

Outline

Introduction

Motivation

Problem

Solution

LIBSYNC (Components)

Evaluation

Conclusion

Discussion

Introduction

Introduction: Some background info

Published in
2010

OOPSLA Rich in details

Makes use of lot
of computer

science
concepts

Software reuse
and evolution

OOP (Classes
and

Inheritance)

Inherited
methods vs
Overridden

methos

Trees and
Graphs based

Algorithms

Mapping two
program
versions

Motivation

Scenario
Sorting Algorithm in Java

Why Re-use Software?

SOFTWARE

DEVELOPMENT COST

TESTING COST MAINTENANCE COST

Libraries and Clients

LIBRARY CLIENTS

Library Changes (Evolves)

Why Library
changes?

What happens
when library
changes?

Evolution of Libraries

NEW FEATURE

REQUESTS

BUG FIXES SECURITY

FIXES

MEET NEW

STANDARDS

Clients => API Usage

Correct names of
APIs

Passing right number
of arguments

Correct handling of
return type of APIs

Order of API
invocations

Motivating Example 1

Client

Motivating Example 2

Client

Motivating Example 3

Client

Library API

Motivating Example 4

Client

Library API

Observations from Examples

 In OOP, two ways to use API functionality

 Method invocation

 Directly calling to API methods or creating objects of API classes

 Inheritance

 Declaring classes in client code that inherit from the API classes and override their methods

 Client code must follow order of API method calls

 API usage and adaptation model should capture complex context surrounding API

usages

 Data and Ordering dependencies

 Control structures around API usages

 Interaction among multiple objects of different types

Limitations of Existing API usage Adaptation

Manually write

expected adaptations

Not capturing complex

control and data

dependencies

Problem

Handling complex API
usage adaptations

Capturing complex Control
and Data dependencies

Libraries, Clients and Researchers

Library Clients Software Engineering

Researchers / Problem

Solvers

Solution: LIBSYNC

Learn complex API

usage adaptation

patterns

From other clients

From Library’s test

code

Recommend to the

developers

Solution

(High Level

View)

Identify changes to API declarations
by comparing two library versions

Extract associated API usage skeletons
before and after library migration

Compare the extracted API usage
skeletons to recover API usage
adaptation patterns

Using the learned adaptation patterns,
recommend the locations and the edit
operations for adapting API usages

Solution: LIBSYNC (Components)

1) Origin Analysis Tool

(OAT):

Tree-based analysis

technique

2) Client API Usage Extractor

(CUE):

Graph-based representation

3) Usage Adaptation Miner

(SAM):

Graph alignment algorithm

4) LIBSYNC:

Recommends locations and

edit operations

Origin Analysis Tool (OAT)

Origin Analysis Tool (OAT)

• Packages

• Classes

• Methods

Map corresponding
code elements

between two program
versions

• Maps two Library versions

• Maps two Client versions (API usage
changes)

Two different purposes

OAT

Project Tree: T(P)

• Package, Class, Interface, Method

Node:

• declare(u): name, parameter types, all modifiers, return type

• parent(u): node’s container element

• content(u): a set of immediate descendant

Attributes:

Transformations

add(u)Add

delete(u)Delete

move(u)Move

update(u)Update

Similarity Measures (Method Level)

 Declaration attribute similarity

Similarity Measures (Method Level)

 Content attribute similarity

 v(u): vector representation of method content

Similarity Measures (Class and Package

Level)

 Declaration similarity is same

 Content similarity is based on how many of their children can be mapped

Mapping

Algorithm

of OAT

INPUT: 2 project trees

Maps nodes in TOP-DOWN order

• AM: Node Already Mapped

• PM: Parent Mapped

• UM: Node and Parent Not Mapped

3 sets

Hash-based optimizations

Client API Usage Extractor (CUE)

Client API Usage Extractor (CUE)

API Usage via Invocation

API Usage via Inheritance

API Usage via Invocation (Graph Model)

•Invocation based GRaph based Object Usage Model

CUE represents API i-usages in clients via iGROUM

Each usage is represented as a labeled, directed, acyclic graph

•Action node: method calls

•Data node: variables (objects)

•Control node: branching point (for, if, while)

Usages: Nodes

•Action node => Action node: control and data dependencies

•Data node => Action node: object is used as an input

•Action node => Data node: object is return as output

Dependencies: Edges

Motivating Example 1

Client

i-Usage Extraction

Build API usage model from each method in client

Source code (method) => AST => Build Graph

Traverses the AST tree to analyze the nodes of interest

•Method invocations

•Object declarations

•Object initializations

•Control structures

Build corresponding action, data and control nodes

Removes unrelated nodes after extraction

Finds the subgraph of the original graph model

Performing Program Slicing from the API usage nodes via control and data dependency edges

API Usage via Inheritance (Inherits vs Overrides

API Class: A => method: m(A.m)

Client Class: C => method: m (C.m)

•C.m is not explicitly declared in the body of Class C

Inherits: C.m is directly inherited from A.m

•C.m is explicitly declared in Class C

•C.m has the same signature as A.m

Overrides: If C.m is overriding A.m

x-Usage model (Graph model)

• Extension-based GRaph-based Object Usage Model

xGROUM:

Directed Labeled Acyclic Graph

• Class

• Method

Nodes (both in clients and libraries):

• o-edge : Overriding edge

• i-edge : Inheriting edge

Edges (Sub-typing relationships)

Usage Adaptation Miner (SAM)

Usage Adaptation Miner (SAM)

SAM uses iGROUMs to represent API i-usages in both Client and
Library test codes

Adaptation of API usages:

•Modeled as a generalization of changes to the corresponding individual iGROUMs

Graph alignment algorithm

i-Usage Change Detection

LIBSYNC uses OAT to derive ΔL and ΔP

ΔL => Changed entities of library versions

ΔP => Changed entities of client versions

For each method, LIBSYNC builds two iGROUMs in two corresponding versions

Uses GroumDiff : Graph-based alignment and differencing algorithm

• To find changes between corresponding versions

GroumDiff: Derived Edit Script

Mining Algorithm

Another Example

Recommending Adaptations

(LIBSYNC)

Recommending Adaptations (LIBSYNC)

 Location Recommendation

 Edit Operations Recommendation

Evaluation

OAT Evaluation: Experiments

TWO EXPERIMENTS FIRST: MANUAL CHECKING SECOND: COMPARE WITH
KIM’S API MATCHING RESULTS

OAT Evaluation: Experiment 1

 Quality of change detection in OAT

 Method level matches

 Four different version pairs of JHotDraw (Library)

OAT Evaluation: Experiment 2

Library 1: JFreeChart

Library 2: JHotDraw

Method level matches

Common set of matches

OAT – Kim

Kim - OAT

OAT Evaluation: Experiment 2 (Contd.)

Evaluation: Adaptation of i-Usage

(LIBSYNC)

Precision of API Usage Change Detection

Accuracy of i-Usage Location &

Operations Recommendation

Accuracy of x-Usage Recommendation

Incorrect mapping

result from OAT

Conclusion

HANDLES COMPLEX API
USAGE ADAPTATIONS

USES SEVERAL GRAPH BASED
APPROACHES

HIGHLY ACCURATE CHANGE
DETECTION AND

RECOMMENDATIONS

Discussion

How often API’s
evolve in a

complex way?

Runtime
complexity?

How to address
the limitation of
training data?

Need of clients
who already

migrated

Thank You!

Appendix:

Related Work

 Library Evolution and Client Adaptation

 Program Differencing and Origin Analysis

 API Usage Specification Extraction

 Empirical Studies of API Evolution

