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OVERVIEWProblem Statement

Exploring API Embedding for API Usages and Applications

To study the characteristics of Word2Vec vectors called API2VEC or API 
embeddings for the API elements within the API sequence in source code.
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Word2Vec
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● A class of Neural Networks Model

● For each unique word produces a 
vector in a continuous space where 
linguistic context of words can be 
observed

● Encodes the contexts of surrounding 
words into vectors

● S

● Training Criteria:
○ I/P to hidden weight matrix and 

hidden to O/P weight matrix 
results in  



API2VEC: Research Questions
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RQ1: In a vector space for the APIs in usages, do nearby 
vectors represent the APIs that have similar usage 
contexts?

Motivation: It has been shown that in the Word2Vec vector 
space for texts, the nearby vectors are the 
projected locations of the words [1] that have 
been used in the similar contexts consisting of 
similar surrounding words.

RQ2: Can vector offsets in API2VEC capture similar usage 
relations (i.e.,co-occurring relations among APIs in 
usages)?

Motivation: In NLP, the regularity of words is observed as    
similar vector offsets between the pairs of words 
sharing a particular relation.

Example: “check if the current element exists 
before retrieval” occurs between 
ListIterator.hasNext and ListIterator.next 

                                           and between 
XMLStreamReader.isEndElement  and 
XMLStreamReader.next



API2VEC: Building API Sequences for API Usage
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API2VEC: Rules to build API Sequences
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API2VEC: API Sequence Example
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An API 
Usage in 
Java JDK

Corresponding 
API

sequence



API2VEC: A Training Example
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API2VEC: Dataset
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Dataset to Build API2Vec Vectors



API2VEC: Answering Research Questions
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A. RQ1. Nearby Vectors Represent APIs with 
Similar Contexts

Examples of APIs sharing similar surrounding APIs

Top-5 Number %

Similar 
surroundings APIs

4632 92.64

Dissimilar 
surroundings APIs

368 7.36

Reason
APIs have multiple contexts and some 

contexts with infrequently used APIs were 
not captured with insufficient data



API2VEC: Answering Research Questions
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B. An API method call or field access to be 
projected closer to the other APIs of the same 
class than the APIs of different classes

Alternative Hypothesis
the distances among the vectors of the APIs within a 
class are smaller than the distances among the 
vectors of APIs belong to different classes

Null Hypothesis
those distances are equal

T-test Hypothesis

Distances of JDK API Vectors within and cross Classes
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API2VEC: Answering Research Questions

RQ2. Similar Vector Offsets Reflect Similar 
Relations

Example Relations Via Vector Offsets in JDK

Example of vector offset

V(List.add) - V(List#var)  =  V(Map.put) - V(Map#var)

Candidate list Accuracy (%)

Top - 1 74.1

Top - 5 94.2



API2API: Motivation
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Distributed Vector Representation reduced to two dimensions using PCA for some APIs in Java and the corresponding APIs in C# 



API2API: Transformation Matrix
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Loss Function:

Java 
Vector

C# 
Vector

Transformation 
Matrix

Training for the Transformation Matrix



API2API: Accuracy Comparison 
(Quantitative)
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Comparison in Top-k API Mapping Mining Accuracy

Parameters: 2*n = 10, N = 300



API2API: Accuracy Comparison (Qualitative)
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1. StaMiner requires a parallel corpus of corresponding usages in two languages

2. Both the tools have out-of vocabulary issue

3. StaMiner has a stronger requirement that the mapped APIs must be in respective pairs in the parallel corpus

4. Using transformation, API2API does not need a parallel corpus with respective API usages but requires a 
training dataset of single API pairs

5. API2VEC need high volume of code to build high-quality vectors

API2API: Accuracy Comparison (New API Mappings)

Technique Number of new API Mappings found

StaMiner [11] 25

API2API 52



API2API: Ablation Study
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Top-k Accuracy with different Training Data Selection

Package-based selection: Divided in 13 groups, trained and tested in groups

Diversified selection: 10-fold cross validation with random selection from each package 

1. Selecting different packages of API mapping pairs to train the transformation matrix



API2API: Ablation Study
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Top-k Accuracy with different Numbers of Dimensions

2. Varying Numbers of Dimensions of Vector Spaces



API2API: Ablation Study
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Accuracy with Varied Training Datasets for Word2Vec

3. Varying Word2Vec Window’s Sizes: Optimal results for 10

4. Varying Sizes of Training Datasets for Word2Vec



API2API: Ablation Study
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Accuracy with various Numbers of Training Mappings

5. Varying number of mapping pairs to train the transformation matrix



MIGRATING EQUIVALENT API USAGE SEQUENCES
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Example: MIGRATING EQUIVALENT API USAGE 
SEQUENCES
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Input source code 
in Java

Extract sequence 
of APIs in Java

Generated 
sequence of APIs 

in C#



MIGRATING EQUIVALENT API USAGE SEQUENCES
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Users partially 
migrated a project

Migrate a new 
project fullyDataset: Oracle O

Precision: LCS / Result

Recall: LCS / Reference

LCS: Longest Common subsequence



Related Work
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7. API2API is inspired from Mikolov et al.[9] where similar geometric arrangements were observed in 
English and Spanish words for numbers and animals.



Questions and Discussions
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