
Exploring API Embedding for API Usages and Applications

Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, Tien N. Nguyen

2017-39th International Conference on Software Engineering

Presented By: Saksham Gupta
 saksham@vt.edu

mailto:saksham@vt.edu
https://docs.google.com/presentation/d/1pxIi-C9LJh4MG4dEONUO2UiEMvdS_StRqPMwz47zS28/edit?usp=sharing
https://github.com/sakshamgupta006/Awesome_Video_Object_Segmentation
https://github.com/DLR-RM/AugmentedAutoencoder

OVERVIEW

Exploring API Embedding for API Usages and Applications

1. Aim of the paper

2. Background

3. Approach

a. API2VEC

i. Research Questions (Characteristics)

ii. Research Findings

b. API2API

i. Research Findings

ii. Ablation Study

4. Migration tool (Phrasal)

5. Related Work

6. Discussion and Questions

7. References

OVERVIEWProblem Statement

Exploring API Embedding for API Usages and Applications

To study the characteristics of Word2Vec vectors called API2VEC or API
embeddings for the API elements within the API sequence in source code.

A

I

M

Word2Vec

Exploring API Embedding for API Usages and Applications
B

A

C

K

G

R

O

U

N

D

● A class of Neural Networks Model

● For each unique word produces a
vector in a continuous space where
linguistic context of words can be
observed

● Encodes the contexts of surrounding
words into vectors

● S

● Training Criteria:
○ I/P to hidden weight matrix and

hidden to O/P weight matrix
results in

API2VEC: Research Questions

Exploring API Embedding for API Usages and Applications

A

P

P

R

O

A

C

H

RQ1: In a vector space for the APIs in usages, do nearby
vectors represent the APIs that have similar usage
contexts?

Motivation: It has been shown that in the Word2Vec vector
space for texts, the nearby vectors are the
projected locations of the words [1] that have
been used in the similar contexts consisting of
similar surrounding words.

RQ2: Can vector offsets in API2VEC capture similar usage
relations (i.e.,co-occurring relations among APIs in
usages)?

Motivation: In NLP, the regularity of words is observed as
similar vector offsets between the pairs of words
sharing a particular relation.

Example: “check if the current element exists
before retrieval” occurs between
ListIterator.hasNext and ListIterator.next

 and between
XMLStreamReader.isEndElement and
XMLStreamReader.next

API2VEC: Building API Sequences for API Usage

Exploring API Embedding for API Usages and Applications

A

P

P

R

O

A

C

H

API2VEC: Rules to build API Sequences

Exploring API Embedding for API Usages and Applications

A

P

P

R

O

A

C

H

API2VEC: API Sequence Example

Exploring API Embedding for API Usages and Applications

A

P

P

R

O

A

C

H

An API
Usage in
Java JDK

Corresponding
API

sequence

API2VEC: A Training Example

Exploring API Embedding for API Usages and Applications

A

P

P

R

O

A

C

H

API2VEC: Dataset

Exploring API Embedding for API Usages and Applications

A

P

P

R

O

A

C

H

Dataset to Build API2Vec Vectors

API2VEC: Answering Research Questions

Exploring API Embedding for API Usages and Applications

A

P

P

R

O

A

C

H

A. RQ1. Nearby Vectors Represent APIs with
Similar Contexts

Examples of APIs sharing similar surrounding APIs

Top-5 Number %

Similar
surroundings APIs

4632 92.64

Dissimilar
surroundings APIs

368 7.36

Reason
APIs have multiple contexts and some

contexts with infrequently used APIs were
not captured with insufficient data

API2VEC: Answering Research Questions

Exploring API Embedding for API Usages and Applications

A

P

P

R

O

A

C

H

B. An API method call or field access to be
projected closer to the other APIs of the same
class than the APIs of different classes

Alternative Hypothesis
the distances among the vectors of the APIs within a
class are smaller than the distances among the
vectors of APIs belong to different classes

Null Hypothesis
those distances are equal

T-test Hypothesis

Distances of JDK API Vectors within and cross Classes

Exploring API Embedding for API Usages and Applications

A

P

P

R

O

A

C

H

API2VEC: Answering Research Questions

RQ2. Similar Vector Offsets Reflect Similar
Relations

Example Relations Via Vector Offsets in JDK

Example of vector offset

V(List.add) - V(List#var) = V(Map.put) - V(Map#var)

Candidate list Accuracy (%)

Top - 1 74.1

Top - 5 94.2

API2API: Motivation

Exploring API Embedding for API Usages and Applications

A

P

P

R

O

A

C

H

Distributed Vector Representation reduced to two dimensions using PCA for some APIs in Java and the corresponding APIs in C#

API2API: Transformation Matrix

Exploring API Embedding for API Usages and Applications

A

P

P

R

O

A

C

H
Loss Function:

Java
Vector

C#
Vector

Transformation
Matrix

Training for the Transformation Matrix

API2API: Accuracy Comparison
(Quantitative)

Exploring API Embedding for API Usages and Applications

R

E

S

U

L

T

S
Comparison in Top-k API Mapping Mining Accuracy

Parameters: 2*n = 10, N = 300

API2API: Accuracy Comparison (Qualitative)

Exploring API Embedding for API Usages and Applications

R

E

S

U

L

T

S

1. StaMiner requires a parallel corpus of corresponding usages in two languages

2. Both the tools have out-of vocabulary issue

3. StaMiner has a stronger requirement that the mapped APIs must be in respective pairs in the parallel corpus

4. Using transformation, API2API does not need a parallel corpus with respective API usages but requires a
training dataset of single API pairs

5. API2VEC need high volume of code to build high-quality vectors

API2API: Accuracy Comparison (New API Mappings)

Technique Number of new API Mappings found

StaMiner [11] 25

API2API 52

API2API: Ablation Study

Exploring API Embedding for API Usages and Applications

R

E

S

U

L

T

S

Top-k Accuracy with different Training Data Selection

Package-based selection: Divided in 13 groups, trained and tested in groups

Diversified selection: 10-fold cross validation with random selection from each package

1. Selecting different packages of API mapping pairs to train the transformation matrix

API2API: Ablation Study

Exploring API Embedding for API Usages and Applications

R

E

S

U

L

T

S

Top-k Accuracy with different Numbers of Dimensions

2. Varying Numbers of Dimensions of Vector Spaces

API2API: Ablation Study

Exploring API Embedding for API Usages and Applications

R

E

S

U

L

T

S

Accuracy with Varied Training Datasets for Word2Vec

3. Varying Word2Vec Window’s Sizes: Optimal results for 10

4. Varying Sizes of Training Datasets for Word2Vec

API2API: Ablation Study

Exploring API Embedding for API Usages and Applications

R

E

S

U

L

T

S

Accuracy with various Numbers of Training Mappings

5. Varying number of mapping pairs to train the transformation matrix

MIGRATING EQUIVALENT API USAGE SEQUENCES

Exploring API Embedding for API Usages and ApplicationsA

P

P

L

I

C

A

T

I

O

N Training for Phrase-based Translation Model

Example: MIGRATING EQUIVALENT API USAGE
SEQUENCES

Exploring API Embedding for API Usages and ApplicationsA

P

P

L

I

C

A

T

I

O

N

Input source code
in Java

Extract sequence
of APIs in Java

Generated
sequence of APIs

in C#

MIGRATING EQUIVALENT API USAGE SEQUENCES

Exploring API Embedding for API Usages and ApplicationsA

P

P

L

I

C

A

T

I

O

N Accuracy (%) In Generating Equivalent API Usage Sequences

Users partially
migrated a project

Migrate a new
project fullyDataset: Oracle O

Precision: LCS / Result

Recall: LCS / Reference

LCS: Longest Common subsequence

Related Work

Exploring API Embedding for API Usages and ApplicationsR

E

L

A

T

E

D

W

O

R

K

7. API2API is inspired from Mikolov et al.[9] where similar geometric arrangements were observed in
English and Spanish words for numbers and animals.

Questions and Discussions

Exploring API Embedding for API Usages and Applications
D

I

S

C

U

S

S

I

O

N

References

Exploring API Embedding for API Usages and Applications
R

E

F

E

R

E

N

C

E

S

[1] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations of words and phrases and their compositionality,” in Advances in
Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013 (NIPS’13)., 2013, pp. 3111–3119.

[2] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep API learning,” in Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE 2016. New York, NY, USA: ACM, 2016, pp. 631–642. [Online]. Available: http://doi.acm.org/10.1145/2950290.2950334.

[3] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word embeddings to document similarities for improved information retrieval in software
engineering,” in Proceedings of the 38th International Conference on Software Engineering, ser. ICSE ’16. ACM, 2016, pp. 404–415. [Online]. Available:
http://doi.acm.org/10.1145/2884781.2884862.

[4] J. M. Fowkes and C. A. Sutton, “Parameter-free probabilistic API mining at GitHub scale,” CoRR, vol. abs/1512.05558, 2015. [Online]. Available:
http://arxiv.org/abs/1512.05558.

[5] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting accurate method and class names,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2015. New York, NY, USA: ACM, 2015, pp. 38–49. [Online]. Available:
http://doi.acm.org/10.1145/2786805.2786849.

[6] C. J. Maddison and D. Tarlow, “Structured generative models of natural source code,” in The 31st International Conference on Machine Learning (ICML),
June 2014.

[7] T. Gvero and V. Kuncak, “Synthesizing Java expressions from free-form queries,” in Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, ser. OOPSLA 2015. New York, NY, USA: ACM, 2015, pp. 416–432. [Online].
Available: http: //doi.acm.org/10.1145/2814270.2814295.

[8] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural coding conventions,” in Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2014. New York, NY, USA: ACM, 2014, pp. 281–293. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2635883.

[9] T. Mikolov, Q. V. Le, and I. Sutskever, “Exploiting similarities among languages for machine translation.” CoRR, vol. abs/1309.4168, 2013. [Online].
Available: http://dblp.uni-trier.de/db/journals/corr/corr1309. html#MikolovLS13.

[10] H. Peng, L. Mou, G. Li, Y. Liu, L. Zhang, and Z. Jin, “Building program vector representations for deep learning,” Knowledge Science, Engineering and
Management, Lecture Notes in Computer Science, vol. 9403, pp. 547–553, 2015.

[11] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen, “Statistical Learning Approach for Mining API Usage Mappings for Code Migration,” in
Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering, ser. ASE ’14. New York, NY, USA: ACM, 2014, pp.
457–468. [Online]. Available: http://doi.acm.org/10.1145/2642937.2643010.

http://doi.acm.org/10.1145/2950290.2950334
http://doi.acm.org/10.1145/2884781.2884862
http://arxiv.org/abs/1512.05558
http://doi.acm.org/10.1145/2786805.2786849
http://doi.acm.org/10.1145/2635868.2635883

Exploring API Embedding for API Usages and Applications

A

P

P

E

N

D

I

X

