Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, Tien N. Nguyen

2017-39th International Conference on Software Engineering

Presented By: Saksham Gupta saksham@vt.edu

OVERVIEW

- 1. Aim of the paper
- 2. Background
- 3. Approach
 - a. API2VEC
 - i. Research Questions (Characteristics)
 - ii. Research Findings
 - b. API2API
 - i. Research Findings
 - ii. Ablation Study
- 4. Migration tool (Phrasal)
- 5. Related Work
- 6. Discussion and Questions
- 7. References

Problem Statement

To study the characteristics of Word2Vec vectors called API2VEC or API embeddings for the API elements within the API sequence in source code.

Word2Vec

- A class of Neural Networks Model
- For each unique word produces a vector in a continuous space where linguistic context of words can be observed
- Encodes the contexts of surrounding words into vectors
- $V(w_i) = \frac{1}{2n} (w_{(i-n)} + \dots + w_{(i-1)} + \dots + w_{(i+1)}) . W_{V \times N}$
 - Training Criteria:

B

Α

С

K

G

R

0

U

Ν

D

• I/P to hidden weight matrix and hidden to O/P weight matrix results in $w = w_i$

Nguyen T. D., Nguyen A. T., Phan H. D., and Nguyen T. 2017. Exploring API embedding for API usages and applications

API2VEC: Research Questions

RQ1: In a vector space for the APIs in usages, do nearby vectors represent the APIs that have similar usage contexts?

Α

Ρ

Ρ

R

Ω

Α

C

Η

Motivation: It has been shown that in the Word2Vec vector space for texts, the nearby vectors are the projected locations of the words [1] that have been used in the similar contexts consisting of similar surrounding words.

RQ2: Can vector offsets in API2VEC capture similar usage relations (i.e.,co-occurring relations among APIs in usages)?

Motivation: In NLP, the regularity of words is observed as similar vector offsets between the pairs of words sharing a particular relation.

Example: "check if the current element exists before retrieval" occurs between *ListIterator.hasNext* and *ListIterator.next* and between *XMLStreamReader.isEndElement* and *XMLStreamReader.next*

API2VEC: Building API Sequences for API Usage

API2VEC: Rules to build API Sequences

Syntax	T = typeof, RetType = return type		
Expression			
Literal:	$\theta(E) = T(Lit)$		
E ::= Lit	$e.g., \theta$ ("ABC") = String		
Identifier	$\theta(E) = T(ID)$ #var		
E ::= ID	<i>e.g.</i> , θ (writer)=FileWriter#var		
MethodCall	$\theta(E) = \theta(e_1) \dots \theta(e_n)$ RetType(m)#ret $\theta(e)$ #rec		
E ::=	$T(e).m T(e_1)$ #arg $T(e_n)$ #arg		
$e.m(e_1,,e_n)$	Discard $\theta(e_i)$ if e_i is ID or Literal		
	Discard $\theta(e)$ #rec if e is a class name		
	$e.g., \ \theta(dict.get(vocab)) =$		
	Integer#ret HashMap#rec HashMap.get String#arg		
Constructor	$\theta(E) = \theta(e_1) \dots \theta(e_n) \ [\theta(e)] \ T(C).new$		
E ::= [e.]new	$T(e_1)$ #arg $T(e_n)$ #arg		
$C(e_1,,e_n)$	<i>e.g.</i> , θ (new FileWriter("A"))		
	= FileWriter.new String#arg		
Field Access	$\theta(E) = T(f)$ #ret $\theta(e)$ #rec T(e).f		
E ::= e.f	Discard $\theta(e)$ #rec if e is a class name		
	<i>e.g.</i> , θ (reader.lock)=Object#ret Reader#rec Reader.lock		
Variable Decl	$\theta(E) = C \# \text{var } \theta(e_1) [\dots C \# \text{var } \theta(e_n)]$		
$E ::= C id_1[=e_1],$			
$[id_n[=e_n]]$	<i>e.g.</i> , θ (FileWriter writer)=FileWriter#var		

L		API2VEC: API Sequence Example
•	An API Usage in Java JDK	<pre>1 HashMap dict = new HashMap(); 2 dict.put("A", 1); 3 FileWriter writer = new FileWriter("Vocabulary.txt"); 4 for (String vocab: dict.keySet()) 5 writer.append(vocab + " " + dict.get(vocab)+"\r\n"); 6 writer.close();</pre>
\ ; [Corresponding API sequence	HashMap#var HashMap.new String#ret HashMap#rec HashMap.put String#arg Integer#arg FileWriter#var FileWriter.new String#arg for String#var String[]#ret HashMap#rec HashMap.keySet String#ret HashMap#rec HashMap.get String#arg FileWriter#rec FileWriter.append String#arg FileWriter.append String#arg

API2VEC: Dataset

	#projects	#Classes	#Meths	#LOCs	Voc size
Java Dataset	14,807	2.1M	7M	352M	123K
C# Dataset	7,724	900K	2.3M	292M	130K

Dataset to Build API2Vec Vectors

API2VEC: Answering Research Questions

4. <i>RQ1</i> .	Nearby	Vectors Represent APIs with
	Similar	Contexts

Тор-5	Number	%
Similar surroundings APIs	4632	92.64
Dissimilar surroundings APIs	368	7.36

Reason

APIs have multiple contexts and some contexts with infrequently used APIs were not captured with insufficient data

G1. File.new	G4. List.iterator		
System.getProperty	SynchronousQueue.iterator		
ProcessBuilder.directory	ArrayList.iterator		
Path.toFile	ArrayDeque.iterator		
FileDialog.getFile	Collection.iterator		
JarFile.new	Vector.iterator		
G2. System.currentTimeMillis	G5. String.hashCode		
Calendar.getTimeInMillis	Integer.hashCode		
ThreadMXBean.getThreadUserTime	Date.hashCode		
Thread.sleep	Class.hashCode		
File.setLastModified	Boolean.hashCode		
Calendar.setTimeInMillis	Long.hashCode		
G3. String.compareTo	G6. Map.keySet		
Integer.compareTo	IdentityHashMap.entrySet		
Comparable.getClass	EnumMap.entrySet		
Boolean.compareTo	AbstractMap.keySet		
Long.compareTo	NavigableMap.keySet		
Comparable.toString	IdentityHashMap.keySet		

Examples of APIs sharing similar surrounding APIs

Α

1

API2VEC: Answering Research Questions

B. An API method call or field access to be projected closer to the other APIs of the same class than the APIs of different classes

T-test Hypothesis

Α

Ρ

Ρ

R

0

Α

C

Η

Alternative Hypothesis

the distances among the vectors of the APIs within a class are smaller than the distances among the vectors of APIs belong to different classes

Null Hypothesis

those distances are equal

Distances of JDK API Vectors within and cross Classes

	t	df	p-value	Confidence interval
Java Class	-934.33	223.330	$<2.2 \times 10^{-15}$	(-∞; -0.5280486)
Java Package	-109.52	67.360	$<2.2 ext{x} 10^{-15}$	(-∞; -0.0472560)
C# Class	-962.47	351.961	$<2.2 \times 10^{-15}$	(-∞; -0.6252377)
C# Package	-443.71	282.878	$<2.2 \times 10^{-15}$	(-∞; -0.1364794)

API2VEC: Answering Research Questions

RQ2. Similar Vector Offsets Reflect Similar Relations

Example of vector offset

V(List.add) - V(List#var) = V(Map.put) - V(Map#var)

Candidate list	Accuracy (%)
Top - 1	74.1
Тор - 5	94.2

before retrieval	Rank
ListIterator.next	1
Enumeration.nextElement	1
StringTokenizer.nextToken	3
t XMLStreamReader.next	1
ng system/stream	
System.getProperty	1
Properties.getProperty	1
XMLReader.getAttrValue	1
types of collections	
List.add	1
Map.put	1
Hashtable.put	1
Dictionary.put	1
t types of numbers	
Float.parseFloat	1
Double.parseDouble	1
Integer.parseInt	1
Long.parseLong	1
nent to a collection	
Set.add	1
Map.put	3
LinkedList.add	1
Hashtable.put	3
	before retrieval ListIterator.next Enumeration.nextElement StringTokenizer.nextToken t XMLStreamReader.next ing system/stream System.getProperty Properties.getProperty XMLReader.getAttrValue types of collections List.add Map.put Hashtable.put Dictionary.put t types of numbers Float.parseFloat Double.parseDouble Integer.parseInt Long.parseLong ment to a collection Set.add Map.put LinkedList.add Hashtable.put

Example Relations Via Vector Offsets in JDK

Distributed Vector Representation reduced to two dimensions using PCA for some APIs in Java and the corresponding APIs in C#

Α

Ρ

Ρ

R

0

Α

С

Η

Comparison in Top-k API Mapping Mining Accuracy

Parameters: 2**n* = 10, *N* = 300

API2API: Accuracy Comparison (Qualitative)

- 1. StaMiner requires a parallel corpus of corresponding usages in two languages
- 2. Both the tools have out-of vocabulary issue

R

Ε

S

U

S

- 3. StaMiner has a stronger requirement that the mapped APIs must be in respective pairs in the parallel corpus
- 4. Using transformation, API2API does not need a parallel corpus with respective API usages but requires a training dataset of single API pairs
- 5. API2VEC need high volume of code to build high-quality vectors

API2API: Accuracy Comparison (New API Mappings)

Technique	Number of new API Mappings found		
StaMiner [11]	25		
API2API	52		

API2API: Ablation Study

1. Selecting different packages of API mapping pairs to train the transformation matrix

Top-k Accuracy with different Training Data Selection

Package-based selection: Divided in 13 groups, trained and tested in groups Diversified selection: 10-fold cross validation with random selection from each package

Top-k Accuracy with different Numbers of Dimensions

R

Ε

S

U

L

S

API2API: Ablation Study

5. Varying number of mapping pairs to train the transformation matrix

Accuracy with various Numbers of Training Mappings

MIGRATING EQUIVALENT API USAGE SEQUENCES

Single API Mappings from Transformation Module

Α

Ρ

Ρ

С

Α

Т

Ω

Ν

Training for Phrase-based Translation Model

Α

Ρ

Ρ

Α

N

MIGRATING EQUIVALENT API USAGE SEQUENCES

Α

Ρ

Ρ

C

Α

Т

 \mathbf{O}

Ν

Dataset: Oracle O		Users partially migrated a project		Migr proj	ate a new ect fully	
	Drojaat	Within	n-Project	Cross	-Project	- 6 - 9
	Floject	Recall	Precision	Recall	Precision	-
:	Antlr	87.8	75.2	90.6	87.2	Precision: LCS / Result
	db4o	83.9	79.4	88.7	75.8	
	Fpml	89.6	86.1	86.3	83.7	
	Itext	75.9	77.2	76.5	81.3	
	JGit	77.2	66.4	81.1	67.1	Recall: LCS / Reference
	JTS	76.3	76.6	76.3	73.7	
	Lucene	75.7	77.7	77.1	78.5	LCS: Longest Common subsequence
	Neodatis	78.6	70.4	78.8	74.2	
	POI	76.9	78.3	77.1	78.6	-

Accuracy (%) In Generating Equivalent API Usage Sequences

R E L

Α

Т

Ε

D

W

0

R

Κ

Exploring API Embedding for API Usages and Applications

Related Work

- 1. DeepAPI [2] uses Recurrent Neural Network Enc./Dec. to generate API sequences (translational model between texts and API sequences)
- 2. Ye et al. [3] used Skip-gram model on API, reference documents and tutorials to create embeddings. Aimed to quantify relations between words and elements to improve text code retrieval.
- 3. PAM [4] (parameter-free probabilistic algorithm to mine API patterns)
- 4. Allamanis et al. [5] suggests methods/classes name using embeddings(statistical coocurrences projected into continuous space with words from the names
- 5. Maddison et al.[6] and Anycode[7] use probabilistic CFGs and neuro-probabilistic language models code.
- 6. Allamanis et al.[8] use bimodel modeling for short texts and source code snippets.
- 7. API2API is inspired from Mikolov et al.[9] where similar geometric arrangements were observed in English and Spanish words for numbers and animals.
- 8. Mou et al.[10] use convolutional neural networks over tree structures which can be replaced inplace of Word2Vec in API2API
- 9. StaMiner [11] mines API mappings by maximizing the likelihoods of observing the mappings between API pairs from a parallel corpus of client code.

Questions and Discussions

1. Dataset (Lots of it !!)

D

S

С

U

S

S

0

Ν

- 2. Similar mappings might not be observed on other programming languages pair like python and C++ (Static and Dynamic Compile time languages)
- 3. Only works for one to one mapping, what about n-to-1 or 1-to-n mappings. What could be some potential solutions?
- 4. Stochastic Gradient Descent suffers from some limitations like local minima and saddle point problems. Other strategies that can be explored are Adaptive Moment Estimation(ADAM) and Nestrov Accelerated Gradient.
- 5. How to generalize the approach. There is a possibility that the approach works well only for the dataset they consider and do not generalize well as is the case with most machine learning strategies.
- 6. What can be the probable strategies of handling previously unseen APIs ?

R

Ε

F

Ε

R

Ε

Ν

C

Ε

S

- [1] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, "Distributed representations of words and phrases and their compositionality," in Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013 (NIPS'13)., 2013, pp. 3111–3119.
- [2] X. Gu, H. Zhang, D. Zhang, and S. Kim, "Deep API learning," in Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, ser. FSE 2016. New York, NY, USA: ACM, 2016, pp. 631–642. [Online]. Available: <u>http://doi.acm.org/10.1145/2950290.2950334</u>.
- [3] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, "From word embeddings to document similarities for improved information retrieval in software engineering," in Proceedings of the 38th International Conference on Software Engineering, ser. ICSE '16. ACM, 2016, pp. 404–415. [Online]. Available: <u>http://doi.acm.org/10.1145/2884781.2884862</u>.
- [4] J. M. Fowkes and C. A. Sutton, "Parameter-free probabilistic API mining at GitHub scale," CoRR, vol. abs/1512.05558, 2015. [Online]. Available: <u>http://arxiv.org/abs/1512.05558</u>.
- [5] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, "Suggesting accurate method and class names," in Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2015. New York, NY, USA: ACM, 2015, pp. 38–49. [Online]. Available: http://doi.acm.org/10.1145/2786805.2786849.
- [6] C. J. Maddison and D. Tarlow, "Structured generative models of natural source code," in The 31st International Conference on Machine Learning (ICML), June 2014.
- [7] T. Gvero and V. Kuncak, "Synthesizing Java expressions from free-form queries," in Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications, ser. OOPSLA 2015. New York, NY, USA: ACM, 2015, pp. 416–432. [Online]. Available: http://doi.acm.org/10.1145/2814270.2814295.
- [8] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, "Learning natural coding conventions," in Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, ser. FSE 2014. New York, NY, USA: ACM, 2014, pp. 281–293. [Online]. Available: <u>http://doi.acm.org/10.1145/2635868.2635883</u>.
- [9] T. Mikolov, Q. V. Le, and I. Sutskever, "Exploiting similarities among languages for machine translation." CoRR, vol. abs/1309.4168, 2013. [Online]. Available: http://dblp.uni-trier.de/db/journals/corr/corr1309. html#MikolovLS13.
- [10] H. Peng, L. Mou, G. Li, Y. Liu, L. Zhang, and Z. Jin, "Building program vector representations for deep learning," Knowledge Science, Engineering and Management, Lecture Notes in Computer Science, vol. 9403, pp. 547–553, 2015.
- [11] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen, "Statistical Learning Approach for Mining API Usage Mappings for Code Migration," in Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering, ser. ASE '14. New York, NY, USA: ACM, 2014, pp. 457–468. [Online]. Available: http://doi.acm.org/10.1145/2642937.2643010.

Α

Ρ

Ρ

Ε

Ν

D

Ι

Х