Software Process

Overview

What is software process?
Examples of process models
Unified Process (UP)

Agile soffware development

N. Meng, B. Ryder

1/18/17

Software Process

 Definition [Pressman]

—a framework for the tasks that are
required to build high-quality software.

— Yo provide stability, control and
organization to an otherwise chaotic
activity

N. Meng, B. Ryder 3

Code-and-Fix Process

* The first thing people tried in the 1950s

1.Write program
2.Improve it (debug, add functionality,
improve efficiency, ...)

3.60T01

« Works for small 1-person projects and
for some CS course assignments

N. Meng, B. Ryder 4

1/18/17

Problems with Code-and-Fix

* Poor match with user needs

Bad overall structure - No blueprint
Poor reliability - no systematic testing
Maintainability? What's that?

What happens when the programmer
quits?

N. Meng, B. Ryder

Code-and-Fix Process

Thrashing

% of Effort

Visble Progress

Planning &
Process Mgt

Time

From McConnell, After the Goldrush, 1999

N. Meng, B. Ryder

6

1/18/17

A More Advanced Process

Thrashing

% of Effort

Planning &
Process Mgt

Time

N. Meng, B. Ryder

Examples of Process Models

Waterfall model
Prototyping model
Spiral model
Incremental model

N. Meng, B. Ryder

1/18/17

* The "classic” process model since 1970s

Waterfall Model

— Also called "software life cycle”

Analysis _l

7Y

-1 Design
¢

A\ 4

1 Implementation _l

1 Testing & Integration

5

A

A

Maintenance

Analysis: Define problems
— requirements, constraints, goals and domain

concepts

Design: Establish solutions
— System architecture, components, relationship
Implementation: Implement solutions

Testing and integration: Check solutions

— Unit testing, system test

ing

Maintenance: the longest phase

N. Meng, B. Ryder

1/18/17

Key Points of the Model

* The project goes through the phases
sequentially

* Possible feedback and iteration across
phases
—e.g., during coding, a design problem is
identified and fixed
« Typically, few or no iterations are used

—e.g., after a certain point of time, the
design is "frozen”

Waterfall Model Assumptions

All requirements are known at the start and
stable

Risks(unknown) can be turned into known

through schedule-based invention and

innovation

The design can be done abstractly and

speculatively

—i.e., it is possible to correctly guess in advance how
to make it work

Everything will fit together when we start the

Integration

1/18/17

Pros and Cons

* Pros: widely used, systematic, good for
projects with well-defined requirements
— Makes managers happy
+ Cons:
— The actual process is not so sequential
* A lot of iterations may happen
— The assumptions usually don't hold

— Working programs are not available early
* High risk issues are not tackled early enough

— Expensive and time-consuming

When would you like to use waterfall?

« Work for big clients enforcing formal
approach on vendors

« Work on fixed-scope, fixed-price
contracts without many rapid changes

« Work in an experienced team

1/18/17

Observation

Standish group 1995
* Top three reasons for at least partial
failure projects
— lack of user input
— incomplete requirements, and
— changing requirements

N. Meng, B. Ryder 15

Prototyping Model

« Build a prototype when customers have
ambiguous requirements

/' Prototyping —

. . Customer
Analysis | Design Evaluation
\ Review & / Customer
UDdGTe satisfied

Testing &
Integration

y

Maintenance N. Meng, B. Ryder 16

A

Implementation

1/18/17

Key Points of the Model

Iterations: customer evaluation followed
by prototype refinement

The prototype can be paper-based or
computer-based

It models the entire system with real data
or just a few screens with sample data

Note: the prototype is thrown away!

Pros and Cons

* Pros
— Facilitate communication about requirements
— Easy to change or discard
— Educate future customers

» Cons

— Iterative nature makes it difficult to plan and
schedule

— Excessive investment in the prototype

— Bad decisions based on prototype
* E.g., bad choice of OS or PL

1/18/17

1/18/17

When would you like to use prototyping?

* When the desired system has a lot of
interactions with users

N. Meng, B. Ryder 19

Spiral Model

* A risk-driven evolutionary model that combines
development models (waterfall, prototype, etc.)

Evaluate alternatives,
identify, resolve risks

Spiral model
(SOM)

20

10

Spiral Phases

Objective setting

— Define specific objectives, constraints,
products, plans

— Identify risks and alternative strategies
Risk assessment and reduction

— Analyze risks and take steps to reduce risks
Development and validation

— Pick development methods based on risks
Planning

— Review the project and decide whether to
continue with a further loop

N. Meng, B. Ryder 21

What Is Risk?

« Something that can go wrong
— People, tasks, work products

* Risk management
—risk identification
—risk analysis
* the probability of the risk, the effect of the risk
—risk planning
* various strategies
—risk monitoring

1/18/17

11

Risk Planning [Sommerville]

Risk Strategy
[Recruitment 1 Alert customer of potential difficulties and the
problems possibility of delays, investigate buying-in-components
[1 Defective 1 Replace potentially defective components with bought-
components in components of known reliability

] Requirements
changes

[Organizational
financial problems/
restructuring

[Underestimated
development time

[l Derive traceability information to assess requirements|
change impact, maximize information hiding in the design
[l Prepare a briefing document for senior management
showing how the project is making a very important
contribution to the goals of the business

[1 Investigate buying-in components, investigate the use

of a program generator

N. Meng, B. Ryder 23

Key Points of the Model

 Introduce risk management into process

* Develop evolutionary releases to

— Implement more complete versions of
software

— Make adjustment for emergent risks

N. Meng, B. Ryder 24

1/18/17

12

Pros and Cons

* Pros
— High amount of risk analysis to avoid/reduce risks

— Early release of software, with extra
functionalities added later

— Maintain step-wise approach with “"go-backs" to
earlier stages

+ Cons
— Require risk-assessment expertise for success
— Expensive

When to use the model?

* Large and mission-

critical projects .
« Medium to high-risk

projects
« Significant changes are

expected

1/18/17

13

Incremental Model

* A sequential of waterfall models
Feedback, adaptation

Analysis _ -

-

Design Design
’ Implementation ‘ ! d

. -] Implementation \
’ Testing & Integration F\ ’ Testing & Integration

S
\

Release n Release n + 1
Iteration n: 3 weeks Iteration n+l: 3 weeks
(for example) (for example)
Key Points of the Model

» Tterative: many releases/increments
— First increment: core functionality
— Successive increments: add/fix functionality
— Final increment: the complete product

* Require a complete definition of the whole
system fo break it down and build
incrementally

N. Meng, B. Ryder 28

1/18/17

14

Pros and Cons

* Pros
— Early discovery of software defects
— Early delivery of working software
— Less cost to change/identify requirements

e Cons

— Constant changes ("feature creep”) may
erode system architecture

When to use the model?

* The requirements of
the complete system .
are clear
* Major requirements
must be defined while
some details can evolve
over time

* Need to get a product
to the market early

1/18/17

15

Spiral model vs. incremental model

« Tterative models
— Most projects build -
software iteratively
* Risk-driven vs.
client-driven

Unified Process (UP)

« An example of iterative process for
building object-oriented systems
— Very popular in the last few years
— By the same folks who develop UML

« It provides a context for our discussion
of analysis and design

1/18/17

16

Phases in UP

Inception |Elaboration| Construction Transition

nception: preliminary investigation
Elaboration: analysis, design, and some coding
Construction: more coding and testing
Transition: beta tests and development

Each phase may be enacted in an iterative
way, and the whole set of phases may be
enacted incrementally

Tteration Length

« Iteration should be short (2-6 weeks)
— Small steps, rapid feedback and adaptation

— Massive teams with lots of communication - but no
more than 6 months

« Iterations should be timeboxed (fixed length)

— Integrate, test and deliver the system by a
scheduled date

— If not possible: move tasks to the next iteration

1/18/17

17

Reasons for Timeboxing

« Improve programmer productivity with
deadlines

* Encourage prioritization and decisiveness

« Team satisfaction and confidence

— Quick and repeating sense of completion,
competency, and closure

— Increase confidence for customers and
managers

UP Disciplines

« Discipline: an activity and related
artifact(s)

* Artifact: any kind of work product

— Requirement modeling

* requirement analysis + use-case models , domain
models, and specs.

— Design

« design + design models
— Implementation

* code

1/18/17

18

Agile Software Development

* A timeboxed iterative and evolutionary
development process
It promotes
— adaptive planning
— evolutionary development,
— incremental delivery
—rapid and flexible response to change

Any iterative method, including the UP, can be
applied in an agile spirit.

The Agile Manifesto

Kent Beck et al. 2001

« We are uncovering better ways of
developing software by doing it and helping
others do it. Through this work we have
come to value:

— Individuals and interactions over Processes
and tools

— Working software over Comprehensive
documentation

— Customer collaboration over Contract
negotiation
— Responding to change over Following a plan

N. Meng, B. Ryder 38

1/18/17

19

Key Points of Agile Modeling

The purpose of modeling is primarily to
understand, not o document

Modeling should focus on the smaller
percentage of unusual, difficult, tricky parts of
the design space

Model in pairs (or triads)

Developers should do the OO design modeling
for themselves

Create models in parallel
— E.g., inferaction diagram & static-view class diagram

Models are inaccurate

* Only tested code demonstrates the true
design

 Treat diagrams as throw-away
explorations

« Use the simplest tool possible to
facilitate creative thinking
— E.g., sketching UML on whiteboards

« Use "good enough” simple notation

1/18/17

20

Agile Methods

* Agile Unified Process (Agile UP)

 Dynamic systems development method
(DSDM)

« Extreme programming (XP)
* Feature-driven development (FDD)
« Scrum

Agile UP

« Keep it simple
— Prefer a small set of UP activities and artifacts
— Avoid creating artifacts unless necessary

* Planning

— For the entire project, there is only a high-level
plan (Phase Plan), to estimate the project end
date and other major milestones

— For each iteration, there is a detailed plan
(Iteration plan) created one iteration in advance

1/18/17

21

Pros and Cons

* Pros

— Customer satisfaction by rapid, continuous
delivery of useful software

— Close, daily cooperation between business people
and developers

— Better software quality and lower cost
+ Cons
— People may lose sight of the big picture
— Heavy client participation is required
— Poor documentation support for training of new
clients/programmers

When to use agile methods?

* Changing

requirements -
* Faster time to

market and

increased

productivity

* Frequently used in
start-up companies

1/18/17

22

