Atomic concepts:
- Store
- Issuer
- Credential
- GovernmentAgency

Atomic roles:
- HasCredential
- IssuedBy
- ControlledBy

Definitions:
- UntrustedIssuer ≡ Issuer ∩ ¬∃ControlledBy.GovernmentAgency
- TrustedIssuer ≡ ¬UntrustedIssuer
- UntrustedCredential ≡ Credential ∩ ¬∃IssuedBy.TrustedIssuer
- TrustedCredential ≡ Credential ∩ ∃IssuedBy.TrustedIssuer
- TrustedStore ≡ Store ∩ ∃HasCredential.TrustedCredential

Concept assertions:
- Store(amazon)
- Store(malroysShadyEmporium)
- Issuer(veriSign)
- Issuer(malroysShadyEmporium)
- GovernmentAgency(nsa)
- Credential(sslCertificate_amazon)
- Credential(sslCertificate_malroysShadyEmporium)

Role assertions:
- HasCredential(amazon, sslCertificate_amazon)
- HasCredential(malroysShadyEmporium, sslCertificate_malroysShadyEmporium)
- IssuedBy(sslCertificate_amazon, veriSign)
- IssuedBy(sslCertificate_malroysShadyEmporium, malroysShadyEmporium)
• ControlledBy(veriSign, nsa)

Algorithm Rules
The \(\rightarrow \cap \)-rule
Condition: \(\mathcal{A} \) contains \((C_1 \cap C_2)(x)\), but it does not contain both \(C_1(x) \) and \(C_2(x) \).
Action: \(\mathcal{A}' = \mathcal{A} \cup \{ C_1(x), C_2(x) \} \).

The \(\rightarrow \cup \)-rule
Condition: \(\mathcal{A} \) contains \((C_1 \cup C_2)(x)\), but neither \(C_1(x) \) nor \(C_2(x) \).
Action: \(\mathcal{A}' = \mathcal{A} \cup \{ C_1(x) \} \) \(\mathcal{A}'' = \mathcal{A} \cup \{ C_2(x) \} \).

The \(\rightarrow \exists \)-rule
Condition: \(\mathcal{A} \) contains \((\exists R.C)(x)\), but there is no individual name \(z \) such that \(C(z) \) and \(R(x, z) \) are in \(\mathcal{A} \).
Action: \(\mathcal{A}' = \mathcal{A} \cup \{ C(y) \} \) \(\mathcal{A}'' = \mathcal{A} \cup \{ R(x, y) \} \) where \(y \) is an individual name not occurring in \(\mathcal{A} \).

The \(\rightarrow \forall \)-rule
Condition: \(\mathcal{A} \) contains \((\forall R.C)(x)\) and \(R(x, y) \), but it does not contain \(C(y) \).
Action: \(\mathcal{A}' = \mathcal{A} \cup \{ C(y) \} \).

The \(\rightarrow \geq \)-rule
Condition: \(\mathcal{A} \) contains \((\geq nR)(x)\), and there are no individual names \(z_1 \ldots z_n \) such that \(R(x, z_i)(1 \leq i \leq n) \) and \(z_i \neq z_j(1 \leq i < j \leq n) \) are contained in \(\mathcal{A} \).
Action: \(\mathcal{A}' = \mathcal{A} \cup \{ R(x, y_i)(1 \leq i \leq n) \} \) \(\cup \{ y_i \neq y_j | 1 \leq i < j \leq n \} \), where \(y_1 \ldots y_n \) are distinct individual names not occurring in \(\mathcal{A} \).

The \(\rightarrow \leq \)-rule
Condition: \(\mathcal{A} \) contains distinct individual names \(y_1 \ldots y_n+1 \) such that \((\leq nR)(x)\) and \(R(x, y_1) \ldots R(x, y_n+1) \) are in \(\mathcal{A} \), and \(y_i \neq y_j \) is not in \(\mathcal{A} \) for some \(i \leq j \).
Action: For each pair \(y_i, y_j \) such that \(i > j \) and \(y_i \neq y_j \) is not in \(\mathcal{A} \), the ABox \(\mathcal{A}_{i,j} = [y_i/y_j] \mathcal{A} \) is obtained from \(\mathcal{A} \) by replacing each occurrence of \(y_i \) by \(y_j \).