Semantic Web Foundations

Part 1: Modeling in Description Logic

Peter Radics
Goal

Goal of presentation:

- Introduce building blocks of Description Logic

- Provide starting point for modeling in Description Logic

- Take away fear of difficult-sounding domain
History

- First knowledge representation systems in the 1970s
 - Focused on high level descriptions of the world for intelligent applications
- Approaches roughly divided into:
 - Logic-based formalisms
 - Non-logic-based representations
History (cont'd)

- Non-logic-based representations
 - Frames
 - Semantic Networks

- Rely on network-based representation structures
 - Nodes
 - Links
History (cont'd)

- However:
 - "...early Semantic Networks suffered from the drawback that they did not have clear semantics."
Core features of frames and semantic networks and first-order logic can provide clear semantics

→ Description Logic (DL)
Aside: First-Order Logic

- Example of a typical statement:

\[
C \equiv x \land y \land R(a,x) \land R(a,y) \land M(x) \land \neg M(y)
\]

- Hard to read and interpret by non-mathematicians
DL: Concepts

- DL is “object-centered modeling language”

- Concepts (Classes, Nodes)
 - Collections of Individuals with same properties
 - Two default concepts (for reasoning):
 - Thing
 - Nothing
 - Modeled as **unary symbols** in first-order logic
Concept definition:

- Provides both necessary and sufficient information for classifying individual
- Establishes logical equivalence
- Acyclic

Classification basic task in constructing terminology
DL: Relationships

- Relationships (Links, Slots, Roles)
 - Subsumption (is-a relationship)
 - Relationship shared with many other modeling languages (e.g. Entity-Relationship diagrams)
 - Used for building taxonomy of classes
 - However, DL allows for arbitrary (binary) relationships
 - Modeled as **binary symbols** in first-order logic
DL: T-Box

- Together, concepts and relationships form terminology (T-Box)

- Terminology models intensional knowledge (i.e. general domain knowledge)
DL: Individuals

- Individuals
 - Instances (members) of classes
 - Convey assertional/extensional knowledge (i.e. problem specific knowledge about a domain)
 - Form A-Box
Aside: Expressiveness

Do we have enough to define:

- Concept “Male students”?
- Concept “Friends and family”?
- Concept “Non-smokers”?
- Concept “Parents?”
- Concept “Parents of only girls”?
- Concept “Parents with three children”?

→Additional building blocks needed
DL: Additional building blocks

- Added to increase expressiveness
 - Intersection of concepts (logical and)
 - Allows for:
 - MaleStudent = Male and Student
 - Union of concepts (logical or)
 - Allows for:
 - FriendsAndFamily = Friends or Family
 - Complement of concepts (logical not)
 - Allows for:
 - NonSmoker = not Smoker
DL: Additional building blocks

- **Existential quantification**
 - Allows for:
 - Parents = exists hasChild (a, x)

- **Universal quantification**
 - Allows for:
 - ParentsOfOnlyGirls = for all hasChild (a,x) Female(x)

- **Cardinality restriction**
 - Allows for
 - ParentsWithThreeChildren = (>=3 hasChild) and (<=3 hasChild)
Example

First-Order Logic example:

\[C \equiv x \quad y \quad R \ a, x \quad R \ a, y \quad M \ x \quad \neg M \ y \]

Becomes:

- ParentWithSonAndDaughter = hasChild.\(x\) and hasChild.\(y\) and \(x\).Male and \(y\).Female
DL: Modeling

- Knowledge base should clearly characterize the question it can answer.

- Model has to be complete before reasoning can be applied.

- Expressiveness of DL language influences complexity of reasoning
DL: Making it user-friendly

- Two approaches:
 - Providing syntax that is closer to natural language
 - Providing graphical user interface for specifying relationships
Real-World examples
Real world examples

<base:BoltedClampConnection
rdf:ID="SmartflexClutchSize3_RotatingBallScrew">
<base:hasPosition
rdf:resource="Pos_Connection_Clutch_BallScrew"/>
<base:isConnectionOfObject1
rdf:resource="#SmartflexClutchSize3"/>
<base:isConnectionOfObject2
rdf:resource="#RotatingBallScrew"/>
Conclusion

- Description Logic is not “scary”

- Allows modeling of real world knowledge in vocabulary similar to natural language
Recommended Read

Discussion

- How does modeling in Description Logic apply to Usable Security?

- What are potential benefits?

- What are potential downfalls?
Outlook: Reasoning

- Open world assumption of DL
 - Example:
 - hasChild (Iokaste, Oedipus)
 - hasChild (Iokaste, Polyneikes)
 - hasChild (Oedipus, Polyneikes)
 - hasChild (Polyneikes, Thersandros)
 - Patricide (Oedipus)

- Question: Does Iokaste have a child that is a patricide and that itself has a child who is not a patricide?