Privacy in Context: Contextual Integrity

Peter Radics
Papers

Privacy Scenarios

- Public Records Online
 - Local vs. Global access of data

- Consumer Profiling and Data Mining
 - Aggregation/analysis of data vs. single occurrence

- RFID Tags
 - Automated capture of enhanced/large amounts of information
Current Practice in Law

Three guiding principles:

1. Protecting privacy of individuals against intrusive government agents
 - 1st, 3rd, 4th, 5th, 9th, 14th amendments, Privacy Act (1974)

2. Restricting access to sensitive, personal, or private information
 - FERPA, Right to Financial Privacy Act, Video Privacy Protection Act, HIPAA

3. Curtailing intrusions into spaces or spheres deemed private or personal
 - 3rd, 4th amendments
Grey Areas of the Three Principles

- USA PATRIOT Act
- Credit headers
- Private vs. public space
- Online privacy at the workplace
Principles and Public Surveillance

- Public surveillance not covered by principles
 - No government agents pursuing access to citizens
 - No collection of personal/sensitive information
 - No intrusion personal/private spaces

→ No privacy problems!
Reasonable Expectation of Privacy

- Extension to principles
 1. Person expects privacy
 2. Expectation deemed reasonable by society

- But: Yielding privacy in public space!
Downsides of Three Principles

- Not conditioned on additional dimensions
 - Time, location, etc.

- Privacy based on dichotomies
 - Private – public, sensitive – non-sensitive, government – private, …
Contextual Integrity: Idea

Main idea:

- Everything happens within a certain context
- Context can be used to provide normative account of privacy
Contextual Integrity: Corner Stones

- Contextual Integrity based on two corner stones:
 - Appropriateness
 - Norms about what is appropriate within context
 - Norms about what is not appropriate within context
 - Allowable, expected, demanded information
 - Distribution
 - Norms about information flow
 - Free choice, discretion, confidentiality, need, entitlement, obligation
Concerns

- Could be detrimentally conservative
- Loses prescriptive character through ties to practice and convention
- Favors status quo
Solution

- Distinguish *actual* and *prescribed* practice

- Grounds for prescription can vary between different possibilities

- Norms can change over time/locations
Change of Norms

- Compare current with proposed norm, compare social, political, and moral values

Affected Values:
- Prevention of information-based harm
- Informational inequality
- Autonomy and Freedom
- Preservation of important human relationships
- Democracy and other social values
Privacy Scenarios (revisited)

- Public Records Online
 - Local vs. Global access of data

- Consumer Profiling and Data Mining
 - Aggregation/analysis of data vs. single occurrence

- RFID Tags
 - Automated capture of enhanced/large amounts of information
Second paper

- Formalization of Contextual Integrity:
 - Linear Temporal Logic

- Agents P, attributes T, computation roles (t, t')

- Knowledge state

- Messages M,
 - $k \rightarrow p, q, m \rightarrow k', k' := k \cup q \times \text{content}(m)$

- Roles R, contexts C (partition of R)

- Role state

- Trace: sequence of triples (k, p, a)
Temporal Logic Grammar

\[\varphi ::= \text{send}(p_1, p_2, m) \mid \text{contains}(m, q, t) \mid \]
\[\text{inrole}(p, r) \mid \text{incontext}(p, c) \mid t \in t' \mid \]
\[\varphi \land \varphi \mid \neg \varphi \mid \varphi U \varphi \mid \varphi S \varphi \mid \diamondsuit \varphi \mid \exists x : \tau . \varphi \]

\(\diamondsuit \) for “eventually,” \(\square \) for “henceforth,” \(\diamondsuit \) and \(\square \) for the past versions of \(\diamondsuit \) and \(\square \), respectively, and \(\mathcal{W} \) for “wait for.” The formula \(\varphi \mathcal{W} \psi \) holds if either \(\square \varphi \) holds or \(\varphi U \psi \) holds.

\[\sigma \models \square \forall p_1, p_2, q : P. \forall m : M. \forall t : T. \]
\[\text{incontext}(p_1, c) \land \text{send}(p_1, p_2, m) \land \text{contains}(m, q, t) \rightarrow \bigvee_{\varphi^+ \in \text{norms}^+(c)} \varphi^+ \land \bigwedge_{\varphi^- \in \text{norms}^-(c)} \varphi^- \quad (1) \]

positive norm: \(\text{inrole}(p_1, \hat{r}_1) \land \text{inrole}(p_2, \hat{r}_2) \land \text{inrole}(q, \hat{r}) \land (t \in \hat{t}) \land \theta \land \psi \)

negative norm: \(\text{inrole}(p_1, \hat{r}_1) \land \text{inrole}(p_2, \hat{r}_2) \land \text{inrole}(q, \hat{r}) \land (t \in \hat{t}) \land \theta \rightarrow \psi \)
Model Checking

- Consistency
- Entailment
- Compliance
Example: HIPAA

\[
\begin{align*}
\text{inrole}(p_1, \text{covered-entity}) & \land \text{inrole}(p_2, \text{individual}) \land (q = p_2) \land (t \in \phi) \\
\text{inrole}(p_1, \text{covered-entity}) & \land \text{inrole}(p_2, \text{provider}) \land \text{inrole}(q, \text{patient}) \land (t \in \phi) \\
\text{inrole}(p_1, \text{covered-entity}) & \land \text{inrole}(p_2, \text{individual}) \land (q = p_2) \land (t \in \text{psychotherapy-notes}) \rightarrow \\
& \quad \bigotimes \exists p : P. \text{inrole}(p, \text{psychiatrist}) \land \text{send}(p, p_1, \text{approve-disclose-psychotherapy-notes}) \\
\text{inrole}(p_1, \text{covered-entity}) & \land \text{inrole}(p_2, \text{individual}) \land \text{inrole}(q, \text{individual}) \land (t \in \text{condition-and-location}) \land \\
& \quad \bigotimes \exists m' : M. \text{send}(p_2, p_1, m') \land \text{contains}(m', q, \text{name}) \\
\text{inrole}(p_1, \text{covered-entity}) & \land \text{inrole}(p_2, \text{clergy}) \land \text{inrole}(q, \text{individual}) \land (t \in \text{directory-information})
\end{align*}
\]

\textbf{Figure 2. Norms of Transmission from the HIPAA Privacy Rule}
Comparison to Other Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Sender</th>
<th>Recipient</th>
<th>Subject</th>
<th>Attributes</th>
<th>Past</th>
<th>Future</th>
<th>Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBAC</td>
<td>Role</td>
<td>Identity</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>●</td>
</tr>
<tr>
<td>XACML</td>
<td>Flexible</td>
<td>Flexible</td>
<td>Flexible</td>
<td>○</td>
<td>×</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>EPAL</td>
<td>Fixed</td>
<td>Role</td>
<td>Fixed</td>
<td>●</td>
<td>×</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>P3P</td>
<td>Fixed</td>
<td>Role</td>
<td>Fixed</td>
<td>●</td>
<td>○</td>
<td>×</td>
<td>○</td>
</tr>
<tr>
<td>CI</td>
<td>Role</td>
<td>Role</td>
<td>Role</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Figure 5. Comparison of various privacy languages. The symbol × indicates the feature is absent from the language, ○ indicates partial or limited functionality, and ● indicates the feature is fully functional. Note, [6] gives an extension of EPAL that is closed under combination.
Discussion

- What are strengths/weaknesses of Contextual Integrity?

- Is a formal model of Contextual Integrity useful?

- How can an end-user benefit?