SMO and Stochastic SVM
Outline

• Is SVM too slow?

• Fix #1: Sequential minimal optimization

• Fix #2: Stochastic gradient descent
QP Running Time

- Depends on algorithm, but most have $O(N^3)$ worst-case time
 - $N =$ number of variables + number of constraints
- No good for “big data”
- Can we exploit known form of SVM QP?
Dual SVM

\[
\min_{\alpha} \frac{1}{2} \sum_i \sum_j \alpha_i \alpha_j y_i y_j x_i^\top x_j - \sum_i \alpha_i \\
\text{s.t. } \sum_i \alpha_i y_i = 0, \quad \alpha_i \in [0, C]
\]

\[
w = \sum_i \alpha_i y_i x_i \\
b = y_i - \sum_j \alpha_j y_j x_j^\top x_i
\]

for examples \(i\) where \(0 < \alpha_i < C\)
Sequential Minimal Optimization

- Optimize two variables at a time
- Closed form updates

\[
\min_{\alpha_a, \alpha_b} \frac{1}{2} \sum_i \sum_j \alpha_i \alpha_j y_i y_j K_{ij} - \sum_i \alpha_i \\
\text{s.t.} \sum_i \alpha_i y_i = 0, \quad \alpha_i \in [0, C]
\]

\[
\min_{\alpha_a, \alpha_b} \frac{1}{2} K_{aa} \alpha_a^2 + \frac{1}{2} K_{bb} \alpha_b^2 + \frac{1}{2} \alpha_a y_a \sum_{j \neq a} y_j \alpha_j K_{aj} + \frac{1}{2} \alpha_b y_b \sum_{j \neq b} y_j \alpha_j K_{bj} - \alpha_a - \alpha_b
\]

\[
y_a \alpha_a + y_b \alpha_b = -\sum_{i \neq a, b} \alpha_i y_i \quad 0 \leq \alpha_a, \alpha_b \leq C
\]

(Platt, 1998)
Hinge-Loss Primal SVM Form

Primal SVM

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} w^T w + C \sum_{i=1}^{n} \xi_i \quad \text{s.t.} \quad y_i(w^T x_i + b) - 1 + \xi_i \geq 0 \ \forall i \in \{1, \ldots, n\}$$

$$\xi \in [0, \infty]^n$$

$$\min_{w \in \mathbb{R}^d} \frac{\lambda}{2} w^T w + \frac{1}{n} \sum_{i=1}^{n} h(1 - y_i(w^T x_i + b))$$

$$h(z) = \max\{0, z\}$$

$$\nabla_w = \lambda w - \frac{1}{n} \sum_{i=1}^{n} y_i x_i l(y_i(w^T x_i + b) < 1)$$

indicator function
Stochastic SVM

(E.g., Shalev-Shwartz et al., '07)

$$\min_{w \in \mathbb{R}^d} \frac{\lambda}{2} w^T w + \frac{1}{n} \sum_{i=1}^{n} h(1 - y_i(w^T x_i + b))$$

$$\nabla_w = \lambda w - \frac{1}{n} \sum_{i=1}^{n} y_i x_i l(y_i(w^T x_i + b) < 1)$$

$$= \lambda w - \mathbb{E}_{i \in \mathbb{U}} [y_i x_i l(y_i(w^T x_i + b) < 1)]$$

$$w^t \leftarrow w^{t-1} + \frac{1}{t} \left(y_i x_i l(y_i(x_i^T w^{t-1} + b) < 1) - \lambda w^{t-1} \right) \text{ for random } i$$

...kinda like perceptron with a margin and regularization
Summary

• Both SMO and stochastic SVM training consider one or two examples at a time

• Dramatic speedups in practice

• Another fast SVM training method cutting-plane or active-set optimization
 • Hope to find only the active constraints (support vectors)
 • Greedily add constraints to the problem