Probability and Naive Bayes

Machine Learning CS5824/ECE5424 Bert Huang Virginia Tech

Outline

- Probabilistic identities
- Independence and conditional independence
- Naive Bayes
- Log tricks

Probability Identities

- Random variables in caps (A)
 - values in lowercase: A = a or just a for shorthand

•
$$P(a | b) = P(a, b) / P(b)$$

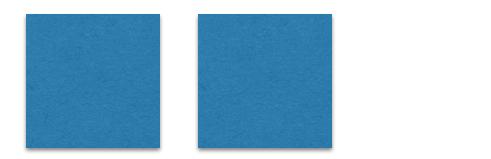
- P(a, b) = P(a | b) P(b)
- P(b | a) = P(a | b) P(b) / P(a)

conditional probability

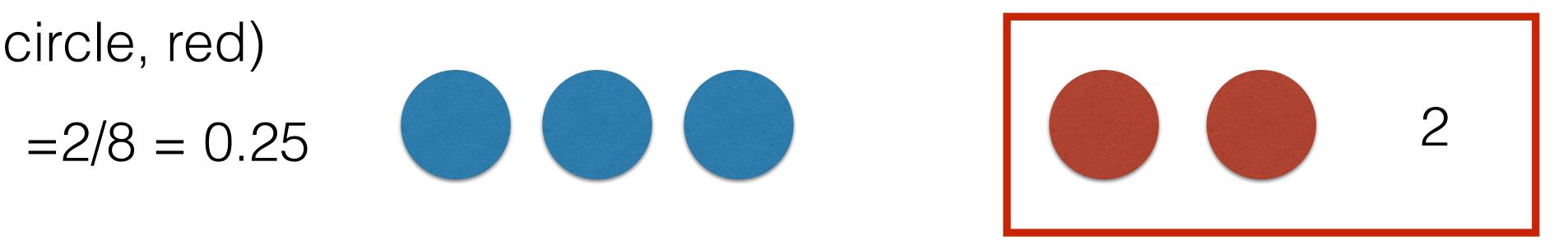
joint probability

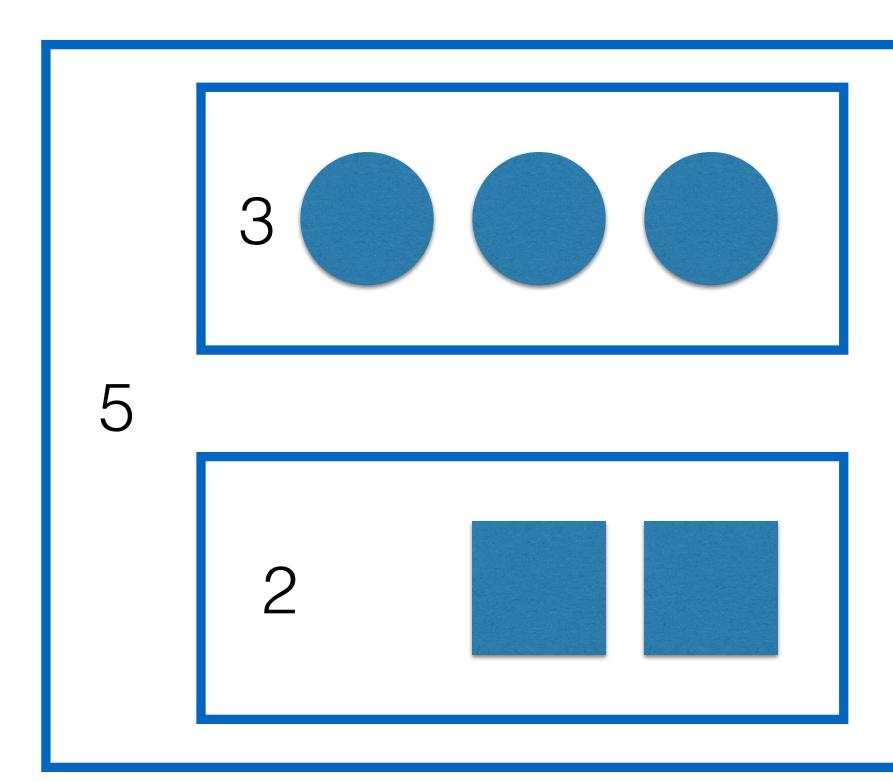
Probability via Counting

P(circle, red)



Probability via Counting





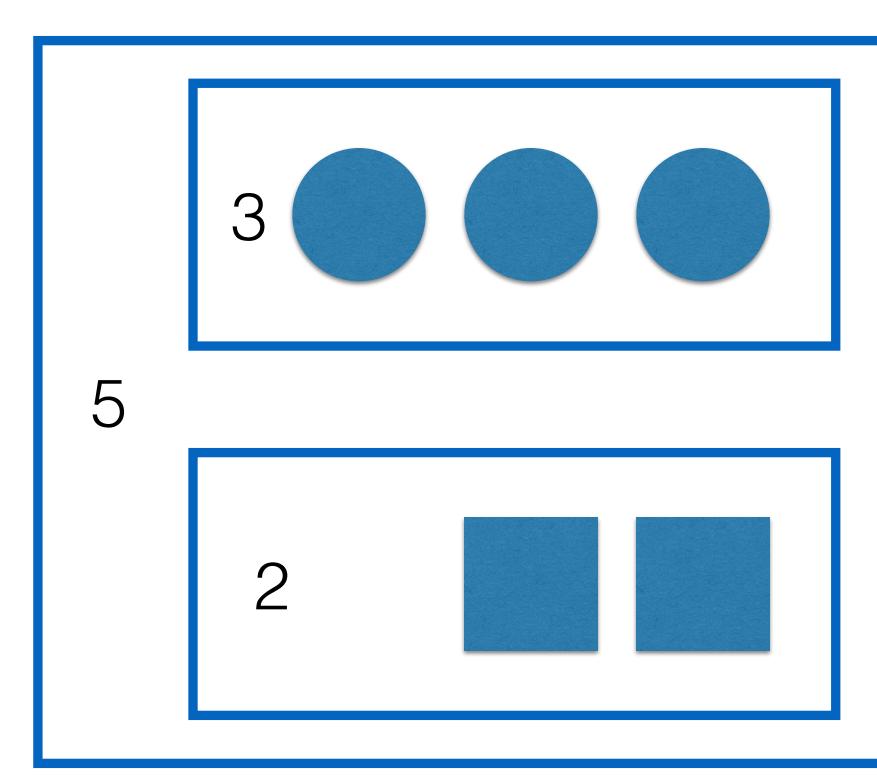
P(circle | red) = P(circle, red) / P(red)

2/3

Probability via Counting

2	
	3
1	

3/8 2/8



2/3

Probability via Counting

	2	
		3
	1	

P(circle | red) P(red) = P(circle, red) 3/8 2/8

Probability Identities

- Random variables in caps (A)
 - values in lowercase: A = a or just a for shorthand
- P(a | b) = P(a, b) / P(b)
- P(a, b) = P(a | b) P(b)
- P(b | a) = P(a | b) P(b) / P(a)

- P(b | a) = P(a | b) P(b) / P(a)
- P(b | a) = P(a, b) / P(a)
- P(b | a)

Bayes Rule

Classification

- $x \in \{0, 1\}^d$, $y \in \{0, 1\}$
- $f(x) \in \{0, 1\}$
- Accuracy: E[f(x) = y]
- **Bayes optimal classifier:** $f(x) = \arg \max_{y} p(y \mid x)$
 - Seems natural, but why is this optimal?

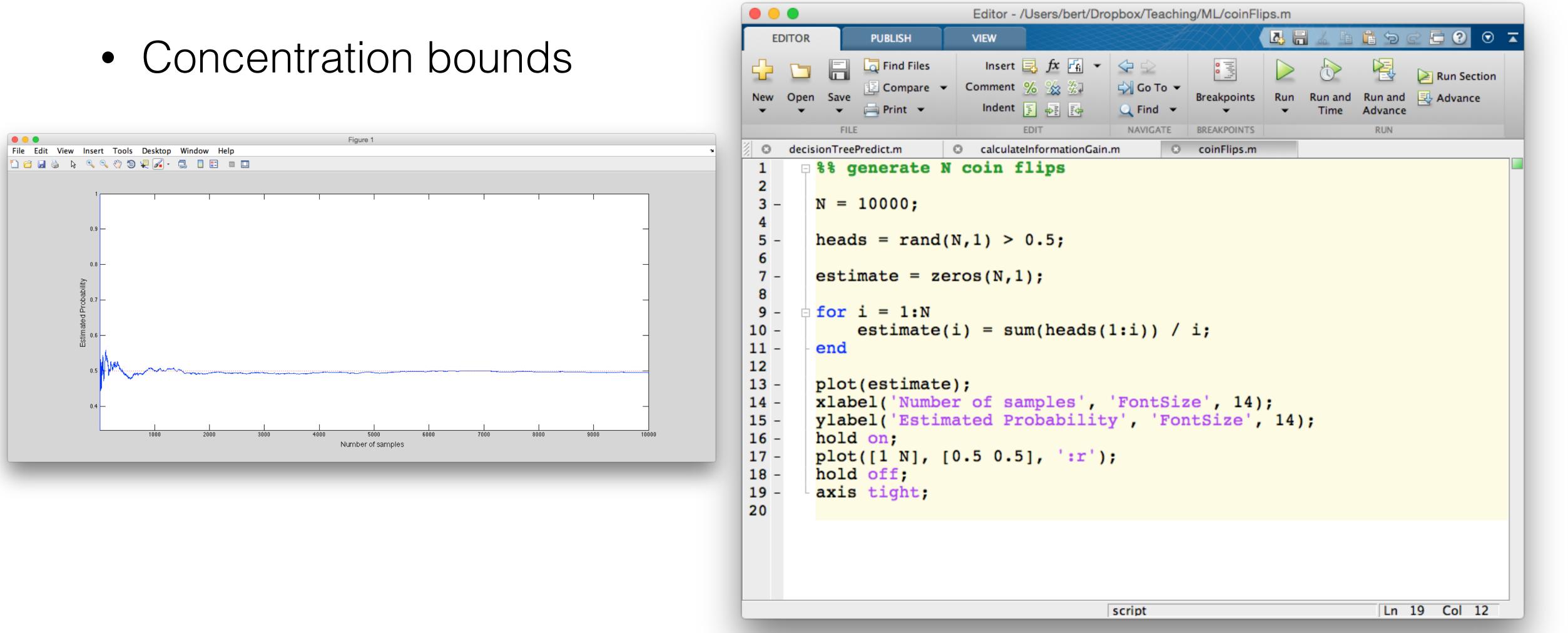
Back-of-Envelope for Bayes Optimal

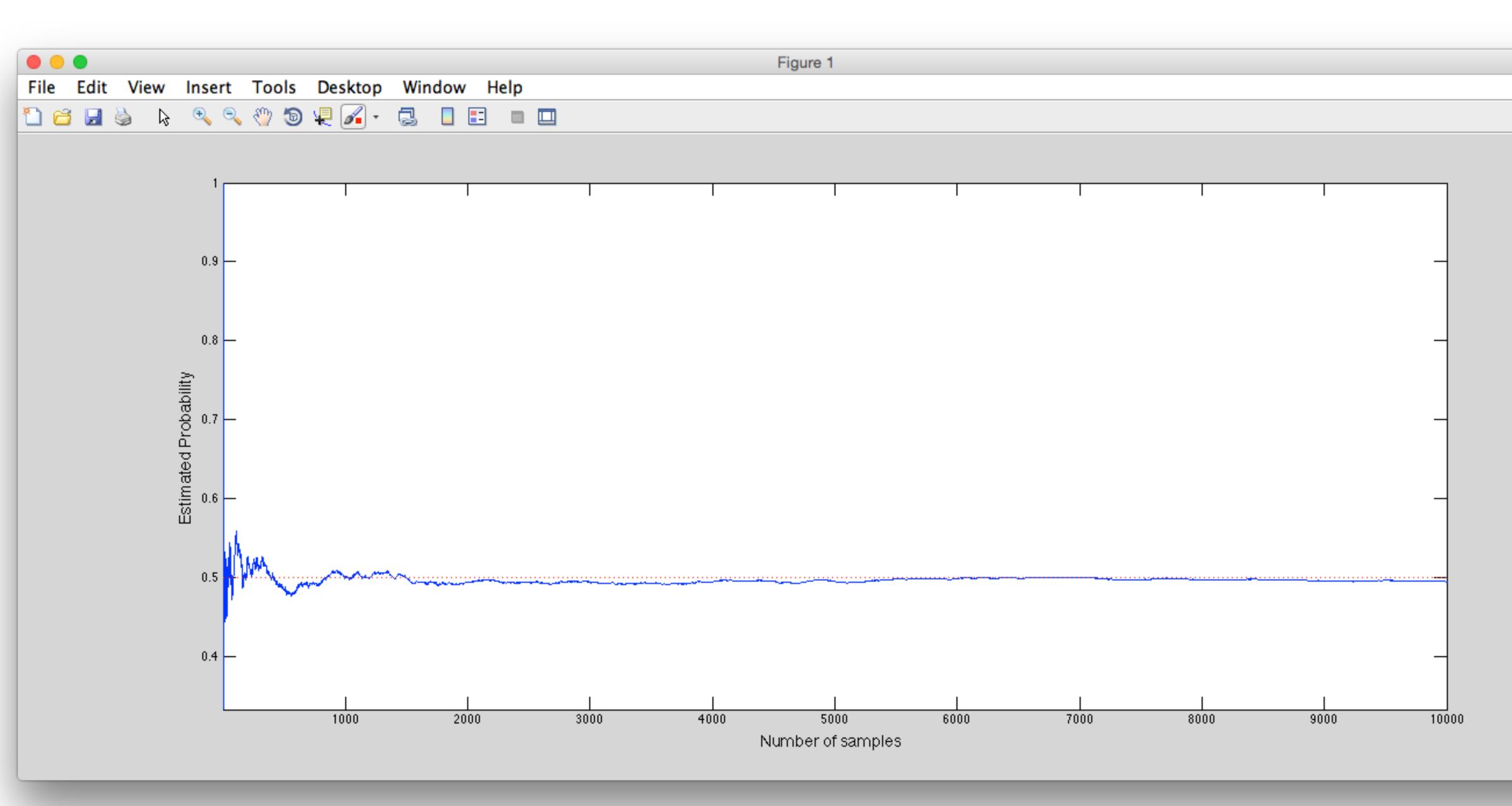
- For each unique **x**, **p(y | x)** is a coin flip
- Assume we need n samples to accurately estimate a coin flip
- How many unique x's?
 - $|\{0,1\}^d| = 2^d$
- Need n2^d samples

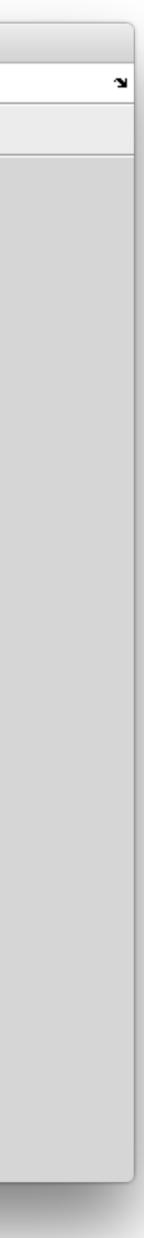
n = 100

- d = 100
- Need 1.2676506 x 10³² samples

How Many Samples?







Independence

- A and B are independent iff p(A, B) = p(A) p(B)
- A and B are *conditionally* independent given C iff p(A, B | C) = p(A | C) p(B | C)

Naive Bayes

- Assume dimensions of x are conditionally independent given y
 - Bag of words: p("virginia", "tech" | y) = p("virginia" | y) p("tech" | y)
- $f(x) = \arg \max_{y} p(y \mid x)$

- = arg max_y p(x | y) p(y) / p(x)
- $= \arg \max_{y} p(x | y) p(y)$
 - = arg max_y $p(y) ||_j p(x_j | y)$

Bernoulli Maximum Likelihood

- $p(y) \prod_{i} p(x_i | y)$
- $p(Y = y) \leftarrow (\# examples where Y = y) / (\# examples)$
- Learning by counting!

• $p(X_i = x_i | y) \leftarrow (\# ex. where Y = y and X_i = x_i) / (\# ex. where Y = y)$

Breaking Maximum Likelihood

- Happy: "Great!" Happy: "Had a great day" Sad: ":-(Bad day" Sad: ":-("
- ???: "Had a bad day :-("
- p(y) = 0.5
- $p(happy | ...) \propto 0.5 \times 0.0 ...$ $p(sad | ...) \propto 0.5 \times 1.0 \times 0.0 \times ...$

great	had	a	bad	day	:-(
1	0	0	0	0	0
1	1	1	0	1	0
0	0	0	1	1	1
0	0	0	0	0	1

	great	had	a	bad	day	:-(
Нарру	1.0	0.5	0.5	0.0	0.5	0
Sad	0.0	0.0	0.0	0.5	0.5	1.0

Breaking Maximum Likelihood

- Happy: "Great!" Happy: "Had a great day" Sad: ":-(Bad day" Sad: ":-("
- ???: "Had a bad day :-("
- p(y) = 0.5
- $p(happy | ...) \propto 0.5 \times 0.0 ...$ $p(sad | ...) \propto 0.5 \times 1.0 \times 0.0 \times ...$

great	had	a	bad	day	:-(
1	0	0	0	0	0
1	1	1	0	1	0
0	0	0	1	1	1
0	0	0	0	0	1

	great	had	a	bad	day	:-(
		0.5		0.0	0.5	0
Sad	0.0	0.0	0.0	0.5	0.5	1.0

Fixing Maximum Likelihood

- $p(Z = z) \leftarrow (\# examples where Z = z + a) / (\# examples + 2a)$
 - E.g., **a** = 1
- a vanishes as # of examples grows toward infinity
- When # is small, a prevents 1.0 or 0.0 estimates

Breaking Maximum Likelihood

- Happy: "Great!" Happy: "Had a great day" Sad: ":-(Bad day" 2 + 1 = 3/4Sad: ":-(" 2 + 2(1)
- ???: "Had a bad day :-("
- p(y) = 0.5
- $p(happy | ...) \propto 0.5 \times 0.25 \times 0.5 \times 0.5 \times 0.25 \times 0.5 \times 0.75$ p(sad | ...)

	:-(day	bad	a	had	great	
-	0	0	0	0	0	1	
	0	1	0	1	1	1	
	1	1	1	0	0	0	
	1	0	0	0	0	0	4
	1	1 0	1 0	0	0	0	4

	great	had	a	bad	day	:-(
Нарру	0.75	0.5	0.5	0.25	0.5	0.25
Sad	0.25	0.25	0.25	0.5	0.5	0.75

= 0.0044 $\propto 0.5 \times 0.75 \times 0.25 \times 0.25 \times 0.5 \times 0.5 \times 0.75$

- Bernoulli: $p(Z | \theta) = \theta^Z (1 \theta)^{(1-Z)}$
- Maximum likelihood: $\theta \leftarrow \arg \max_{\theta'} p(Z \mid \theta')$
- $p(\theta' \mid Z) = p(Z \mid \theta') p(\theta') / p(Z)$
- MAP: $\theta \leftarrow \arg \max_{\theta'} p(Z \mid \theta') p(\theta')$
- Previous trick equiv. to setting $p(\theta)$ to a Beta distribution

Maximum a Posteriori

• Maximum a posteriori = maximize posterior: $\theta \leftarrow \arg \max_{\theta'} p(\theta' \mid Z)$

Continuous Data

- Conditional feature independence with continuous data?
- E.g., use normal distribution for $p(x_j | y)$
 - p(y) is the same as before
 - $p(x_i | y)$ is the MLE for univariate normal

- Each $p(x_i | y)$ is in [0,1]
- Multiplying **d** of them quickly goes to numerical zero
 - E.g., $0.9^{256} = 1.932334983E-12$
- Instead, use log probabilities: $\log \prod_j p(x_j | y) = \sum_j \log p(x_j | y)$
 - E.g., $\log 0.9^{256} = 256 \log 0.9 = -11.71$

Log Tricks

Summary

- Probabilistic identities
- Independence and conditional independence
- Naive Bayes
- Log tricks