Probabilistic Graphical Models and Bayesian Networks

Machine Learning CS5824/ECE5424 Bert Huang Virginia Tech

Independence

independent & identically distributed (i.i.d.)

amount of dependence

cheap, easy, embarrassingly parallel

full joint distributions

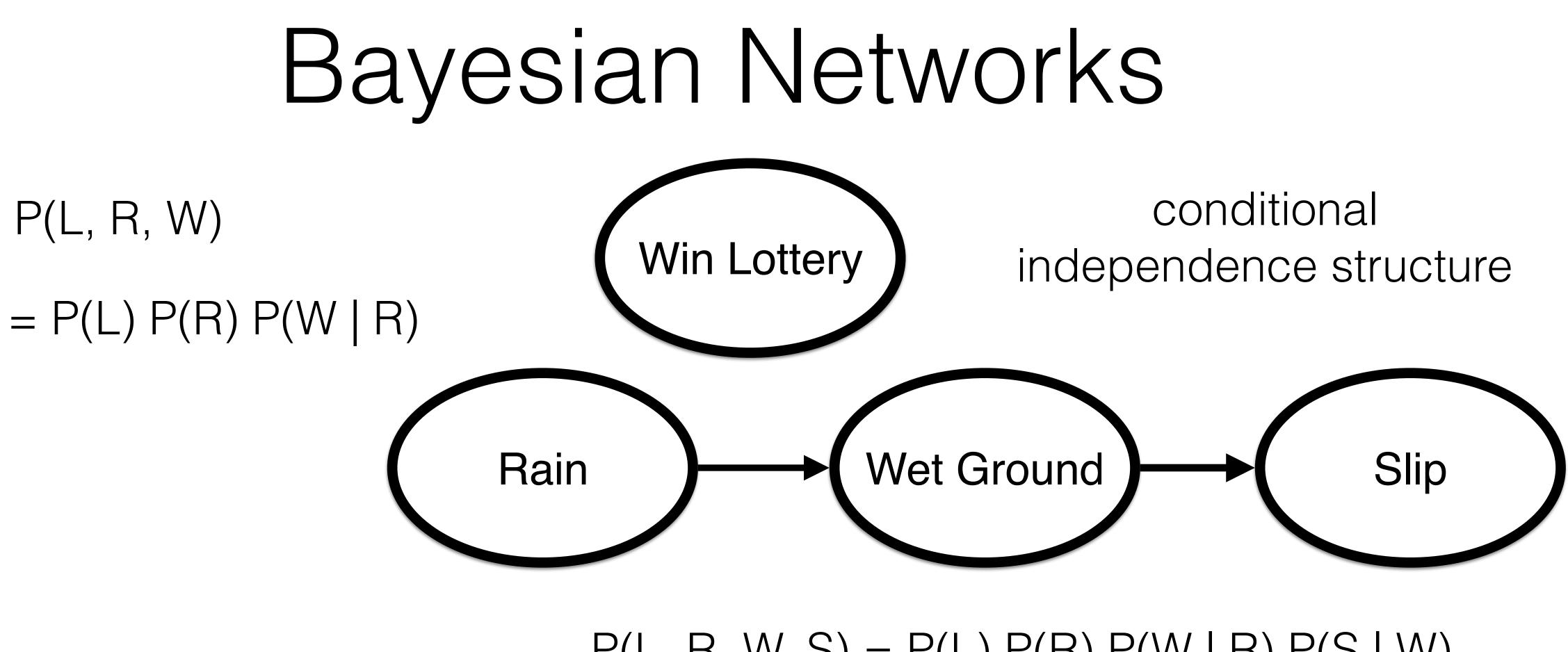
super expensive

- Probabilistic graphical models
- Bayesian networks
- Naive Bayes and Logistic Regression as Bayes nets
- Time Series Bayes Nets

Outline

Probabilistic Graphical Models

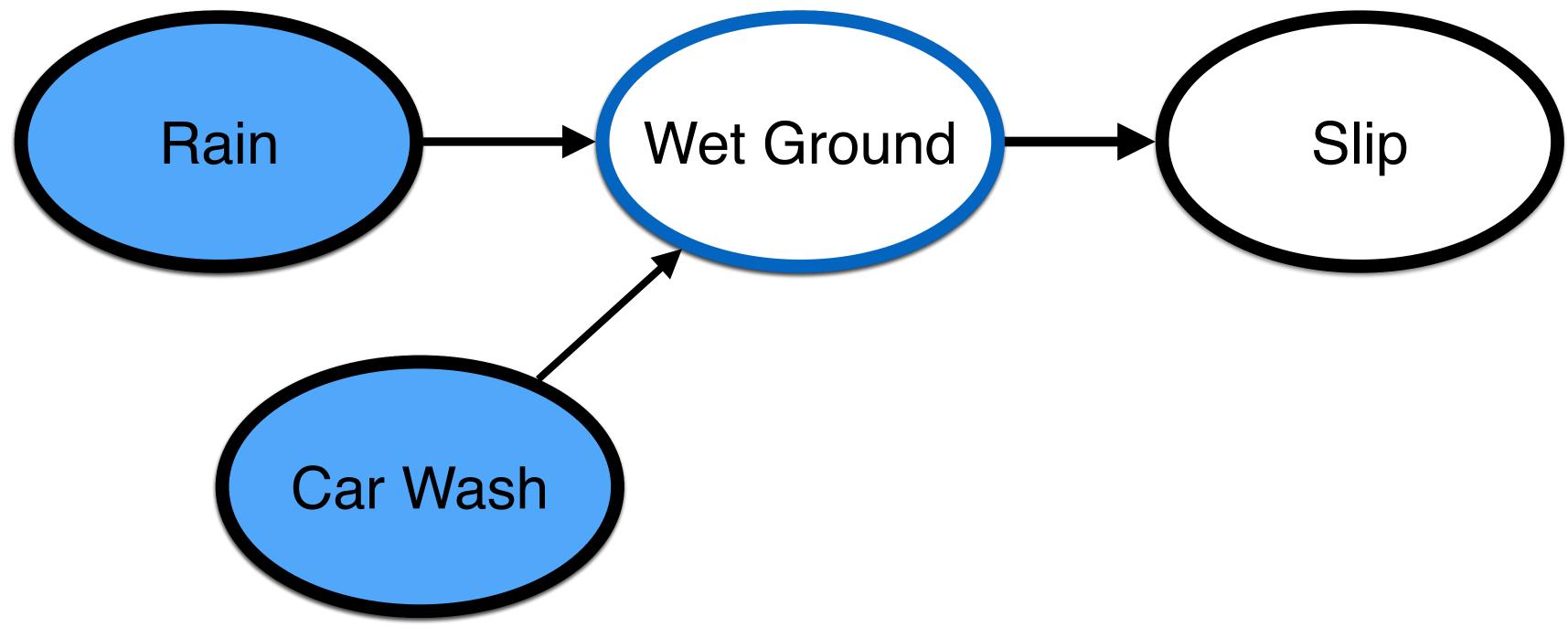
- PGMs represent probability distributions
- They encode conditional independence structure with graphs
- They enable graph algorithms for inference and learning

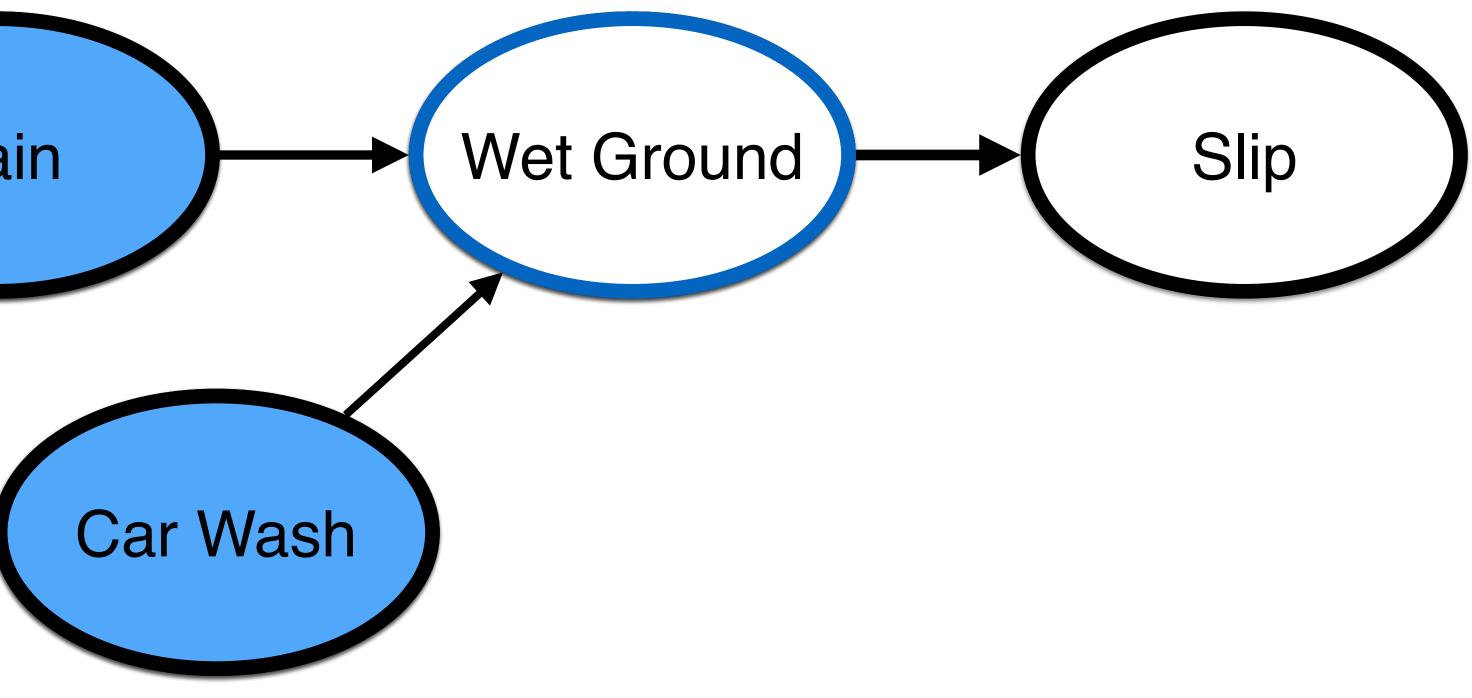


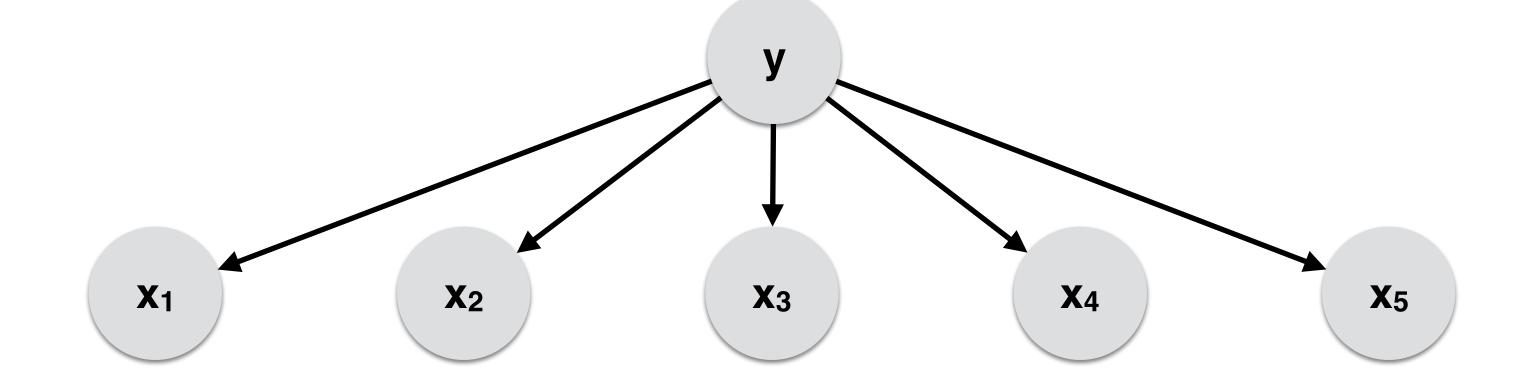
P(L, R, W, S) = P(L) P(R) P(W | R) P(S | W)

Bayesian Networks

P(R, W, S, C) = P(R) P(C) P(W | C, R) P(S | W)P(X | Parents(X))

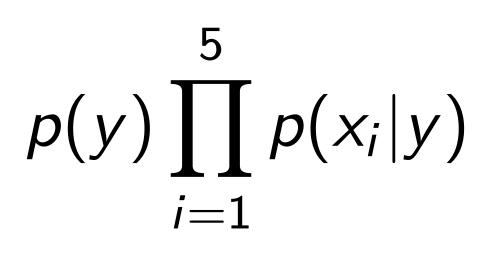


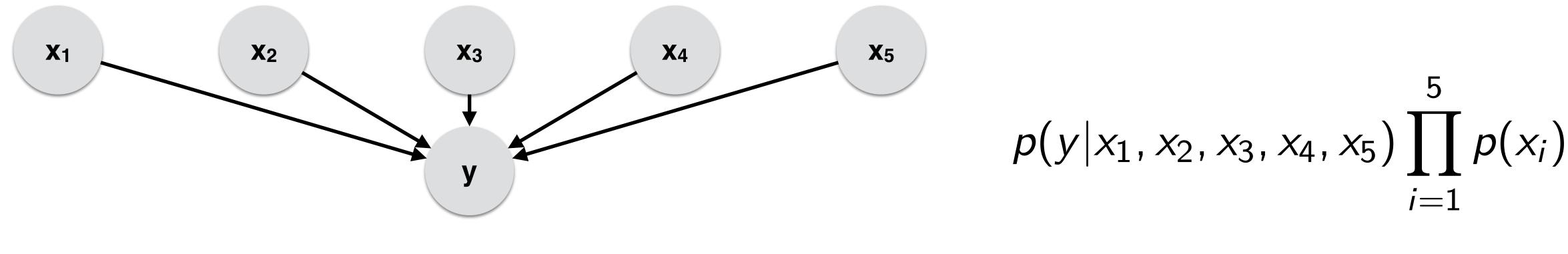






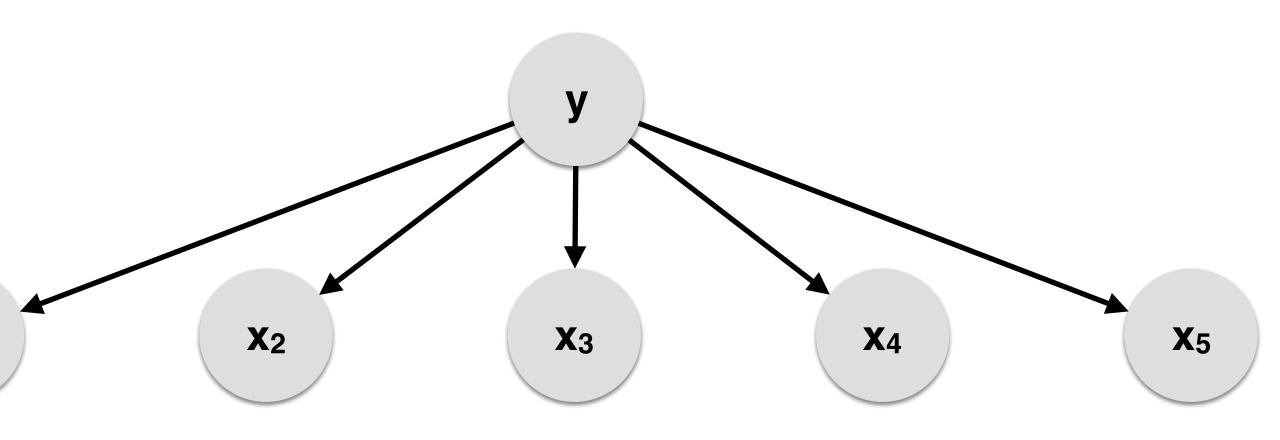
X1



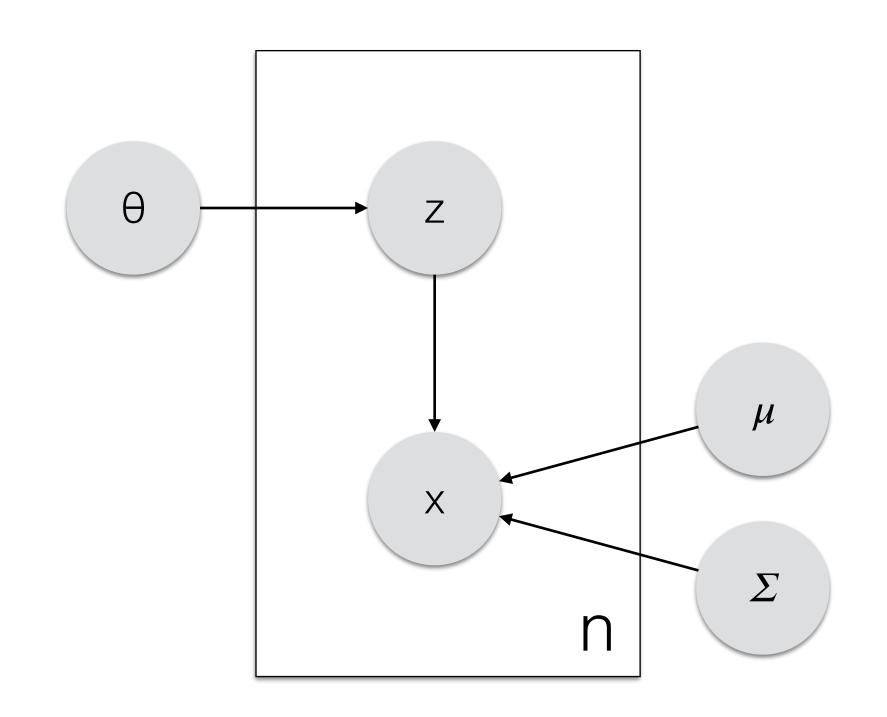


logistic regression (with input likelihood)

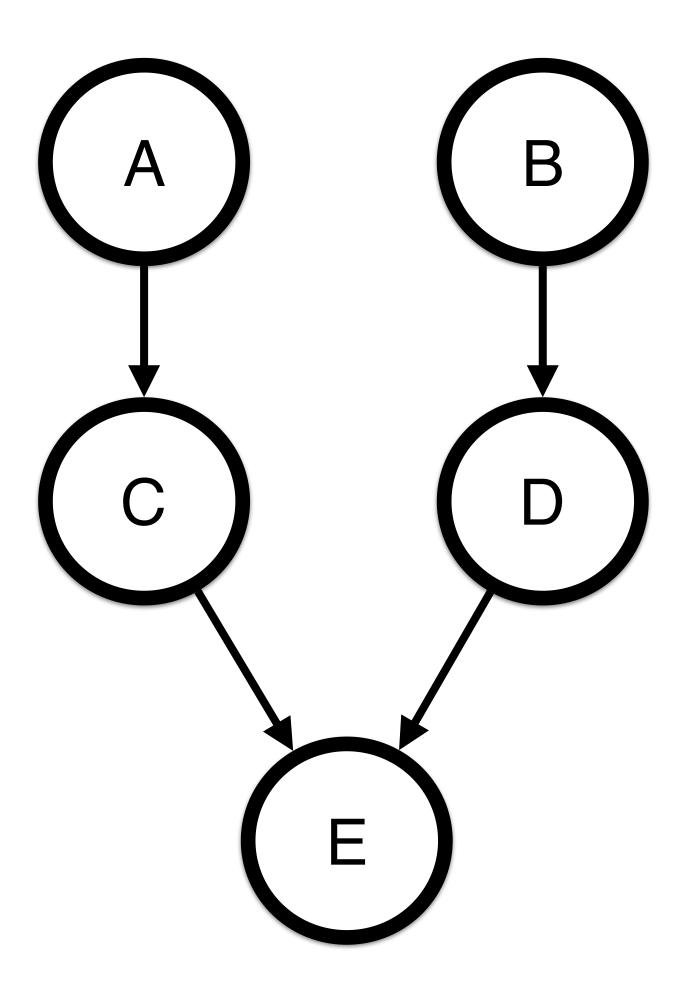
naive Bayes



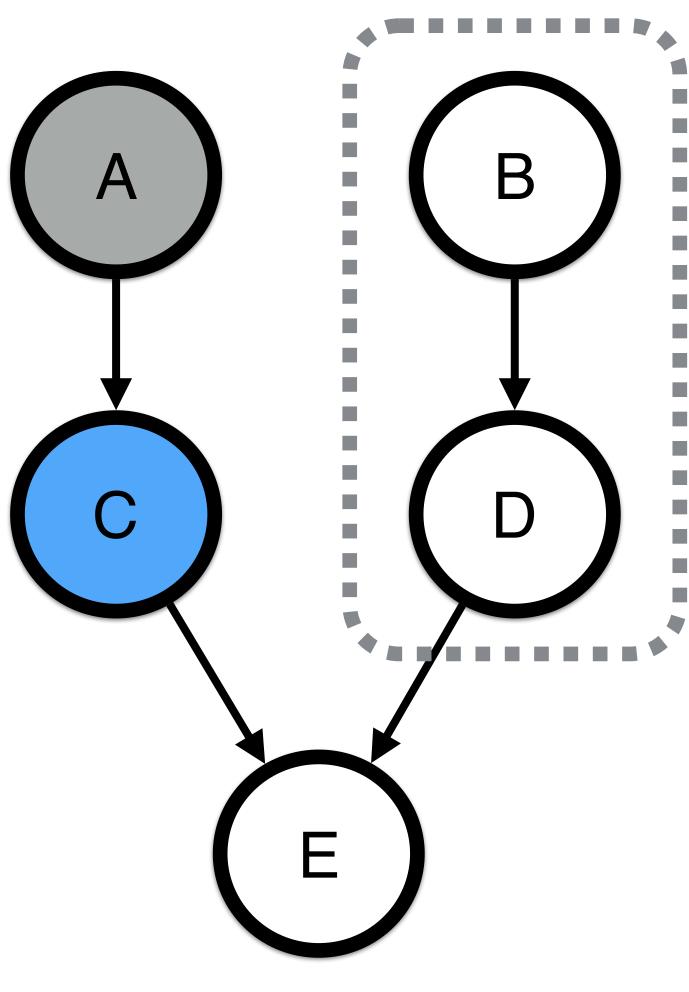
Gaussian Mixture Model



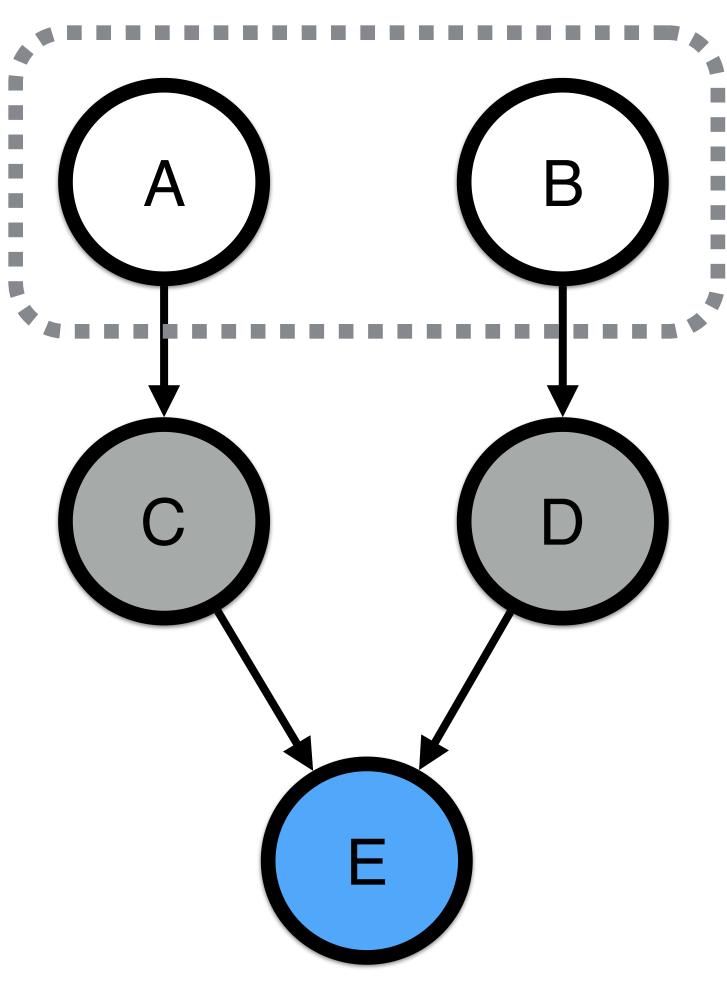
 Each variable is conditionally independent of its non-descendents given its parents



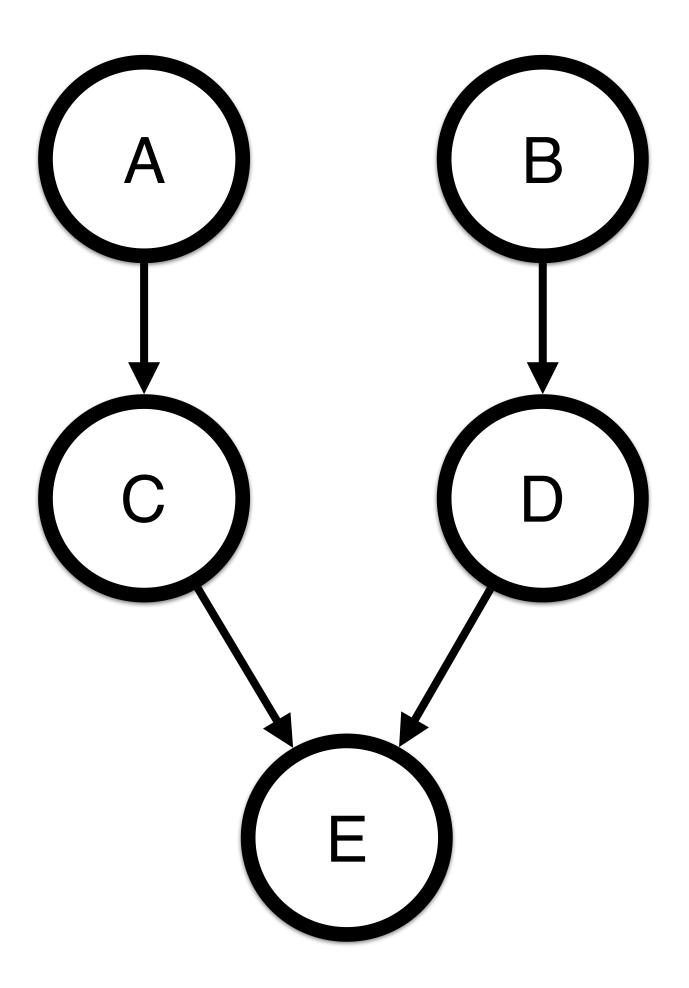
 Each variable is conditionally independent of its non-descendents given its parents



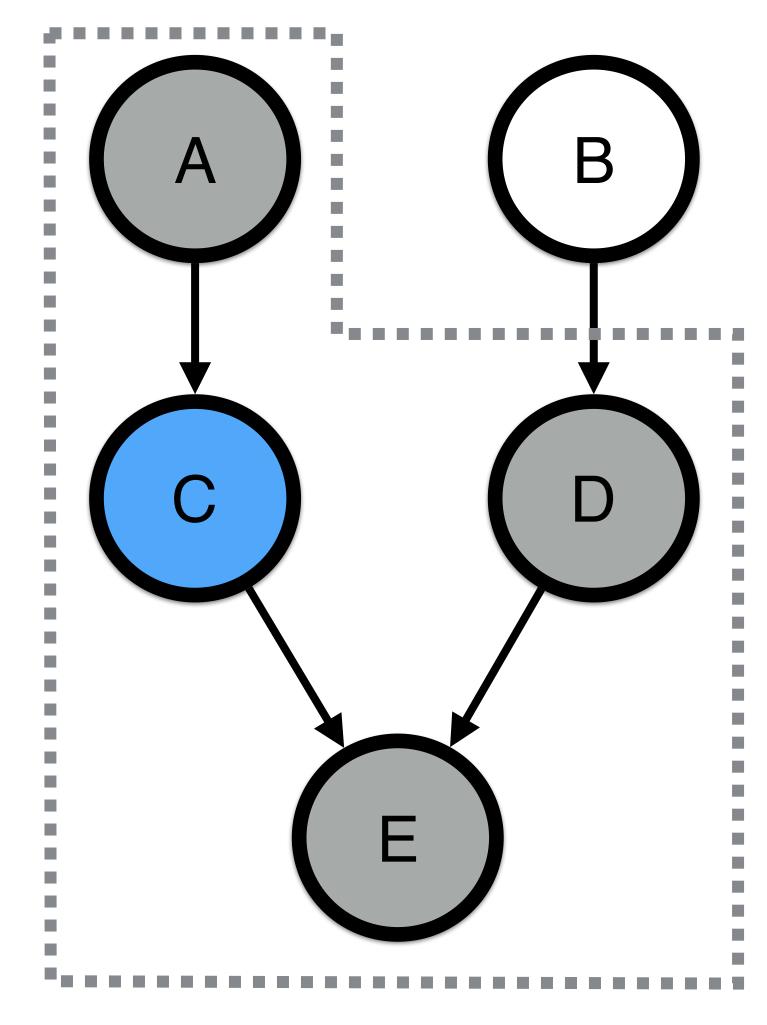
 Each variable is conditionally independent of its non-descendents given its parents



- Each variable is conditionally independent of its non-descendents given its parents
- Each variable is conditionally independent of any other variable given its Markov blanket
 - Parents, children, and children's parents



- Each variable is conditionally independent of its non-descendents given its parents
- Each variable is conditionally independent of any other variable given its Markov blanket
 - Parents, children, and children's parents



General Inference: Variable Elimination

- irrelevant to the query. Sum out irrelevant variables.
- Iterate: \bullet
 - choose variable to eliminate
 - sum terms relevant to variable, generate new factor
 - until no more variables to eliminate
- Exact inference is #P-Hard
 - in tree-structured BNs, linear time (in number of table entries)

• Every variable that is not an ancestor of a query variable or evidence variable is

Learning in Bayes Nets

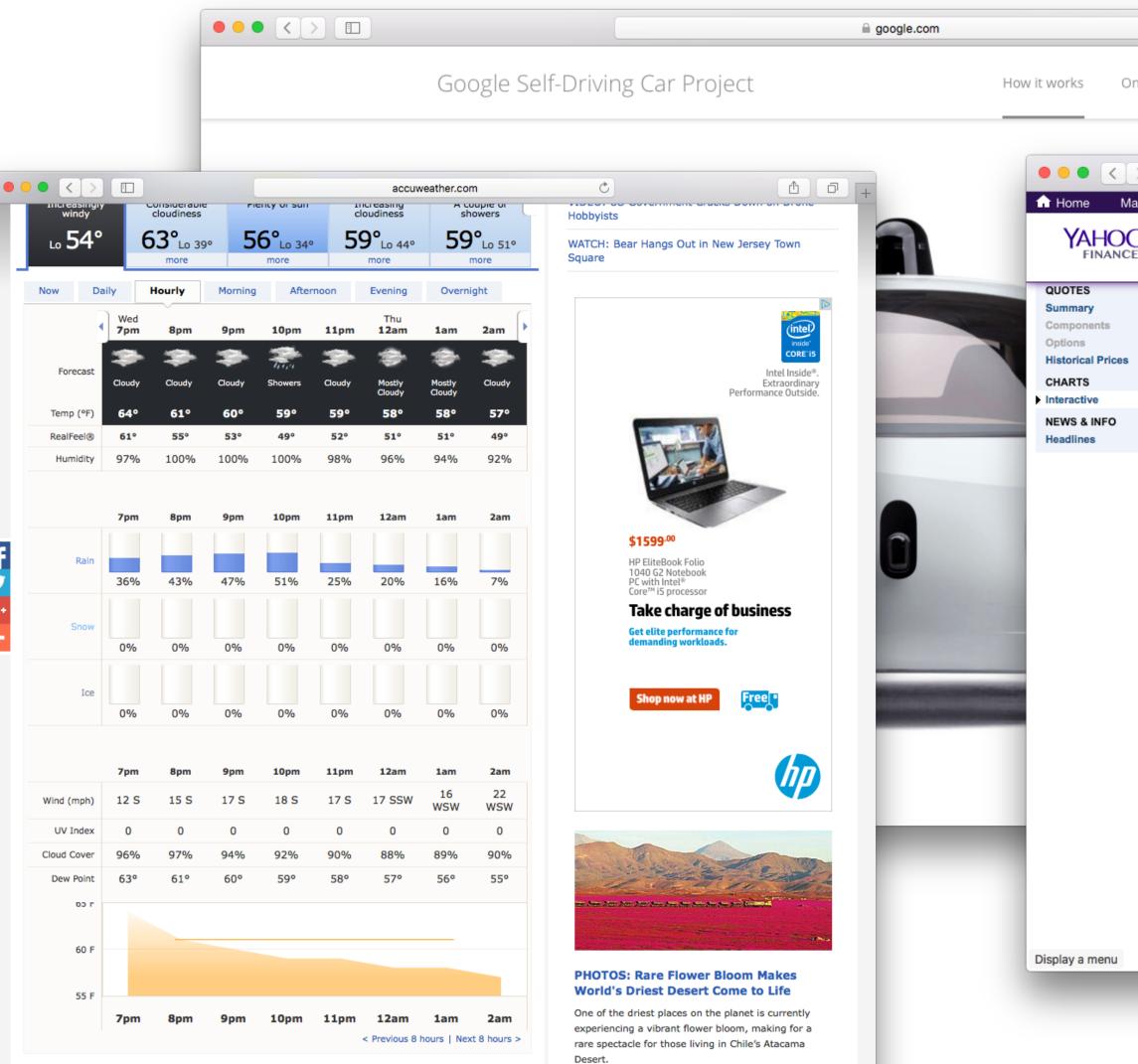
- Super easy!
- Estimate each conditional probability
 - just like we did for naive Bayes

Bayesian Networks Summary

- Directed graph represents conditional dependence structure.
- Each variable conditioned on parents.
- General graph-based inference and learning algorithms

Time Series Bayes Nets

- Markov models
- Variable elimination in Markov models
- Forward message-passing inference
- Hidden Markov Models
- Forward-backward inference
- Learning



Temperature History - Oct 28

more Historical Weather Data >

Read Story >

Time Series

		_	finance.y	ahoo.com		Ċ	
h News Sports	Finance Weather	Games Ans	vers Screen	Flickr Mobil	e More 🗸		
			Sear	ch Finance Se	arch Web	👤 s	ign In 🛛 🔛 Mail 🔅
S&P 500 (^GSPC) 2,090.35 +24.4	46(+1.18%) SNP					Beat the Get the a	
+ Indicator + Comparis	on 1d 5d 1m	3m 6m YTD	1y 2y 5y	10y Max 🧮 ~	Linear	Co To Symbol	→ 🗉 🖸 🕸
Open 2079.47 Close 2079.42 Low 2079.42 High 2079.59	2079.42						2095.00
Vol 643.49K % Chg 0.65%						ſ	2090.35
	A.	putu		\sim			_2080.00
/	M	<u>~~~~</u>					2079.42
man			FINA	NCE		N	2075.00
					M M	N	2070.00

Recent Articles	Prev Close	2,065.89	High	2,090.35
QEP Resources tops 3Q profit forecasts	Open	2,066.48	Low	2,063.11

- Goals:
 - Prediction

• Filtering, smoothing

Time Series

Markov Models

Markov assumption: the past is independent of the future given the present

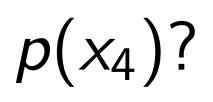
 $p(x_i, x_k | x_i) = p(x_i | x_i) p(x_k | x_i)$ i < j < k

T-1 $p(x_1, ..., x_T) = p(x_1) \prod p(x_{t+1}|x_t)$ t=1

> usually parameterized with function independent of *t*

 $p(x_1, x_2, x_3, x_4) = p(x_1)p(x_2|x_1)p(x_3|x_2)p(x_4|x_3)$ X_1, X_2, X_3 $p(x_2) = \alpha_2(x_2) = \sum p(x_1)p(x_2|x_1)$ $p(x_4) = \sum \alpha_2(x_2)p(x_3|x_2)p(x_4|x_3)$ X_2, X_3 $p(x_3) = \alpha_3(x_3) = \sum \alpha_2(x_2)p(x_3|x_2)$ X_2

Variable Elimination



 $p(x_4) = \sum p(x_1)p(x_2|x_1)p(x_3|x_2)p(x_4|x_3)$

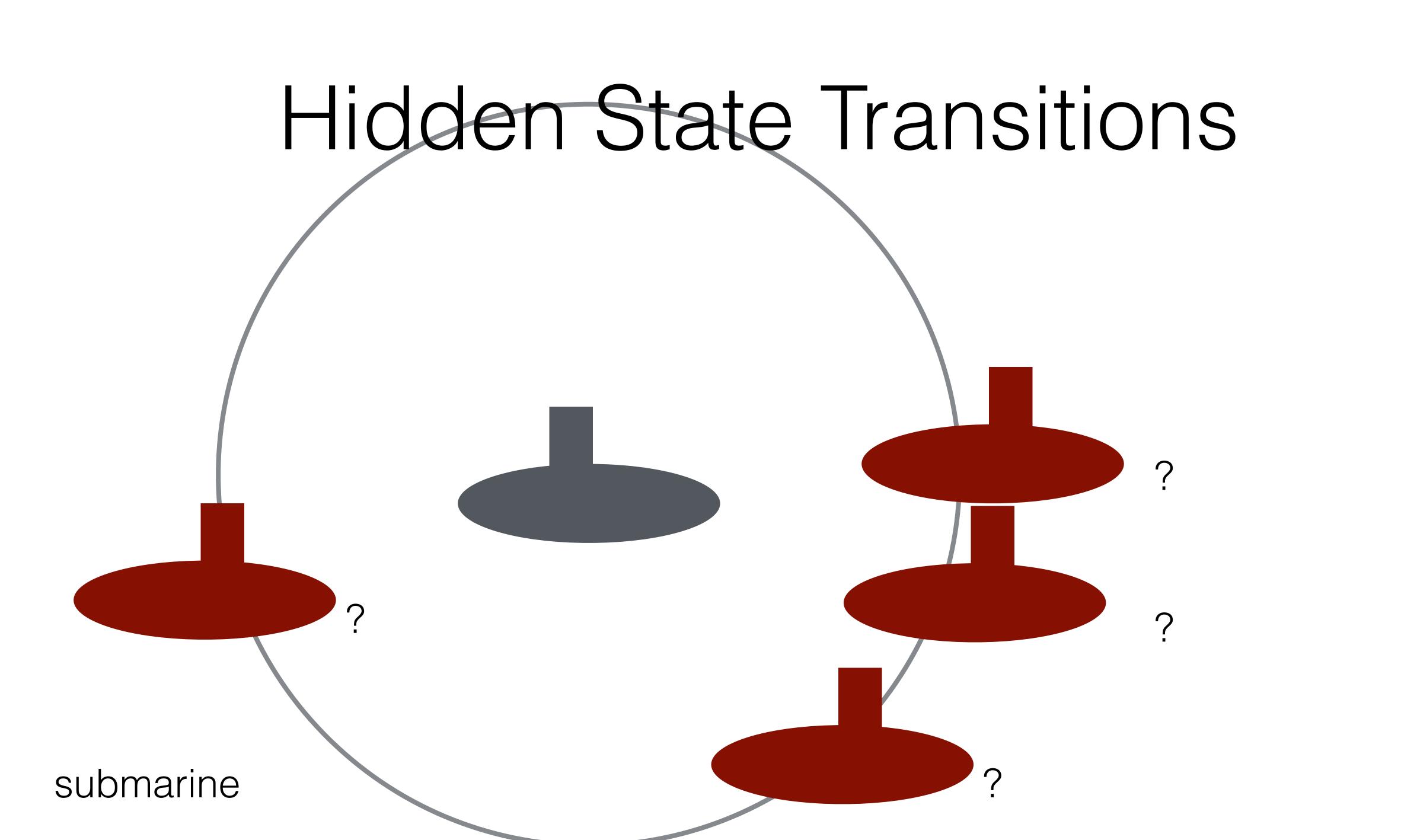
 $p(x_4) = \sum \alpha_3(x_3)p(x_4|x_3)$

Forward Message Passing

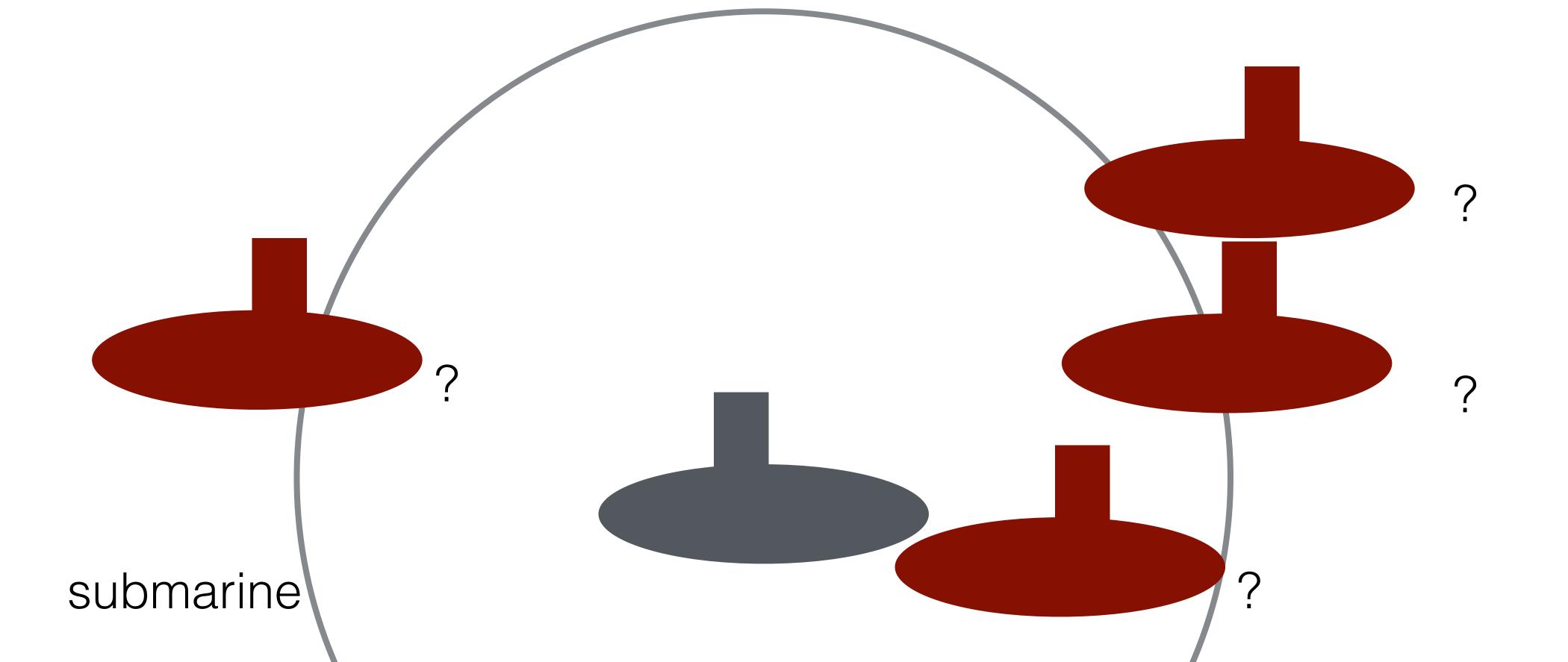
- $p(X) = p(x_1) \prod_{t=1}^{T-1} p(x_{t+1}|x_t)$
- for **t** from 1 to (T-1): $p(x_{t+1}) = \sum_{x_t} p(x_t) p(x_{t+1} | x_t)$

- Markov models
- Variable elimination in Markov models
- Forward message-passing inference
- Hidden Markov Models
- Forward-backward inference
- Learning

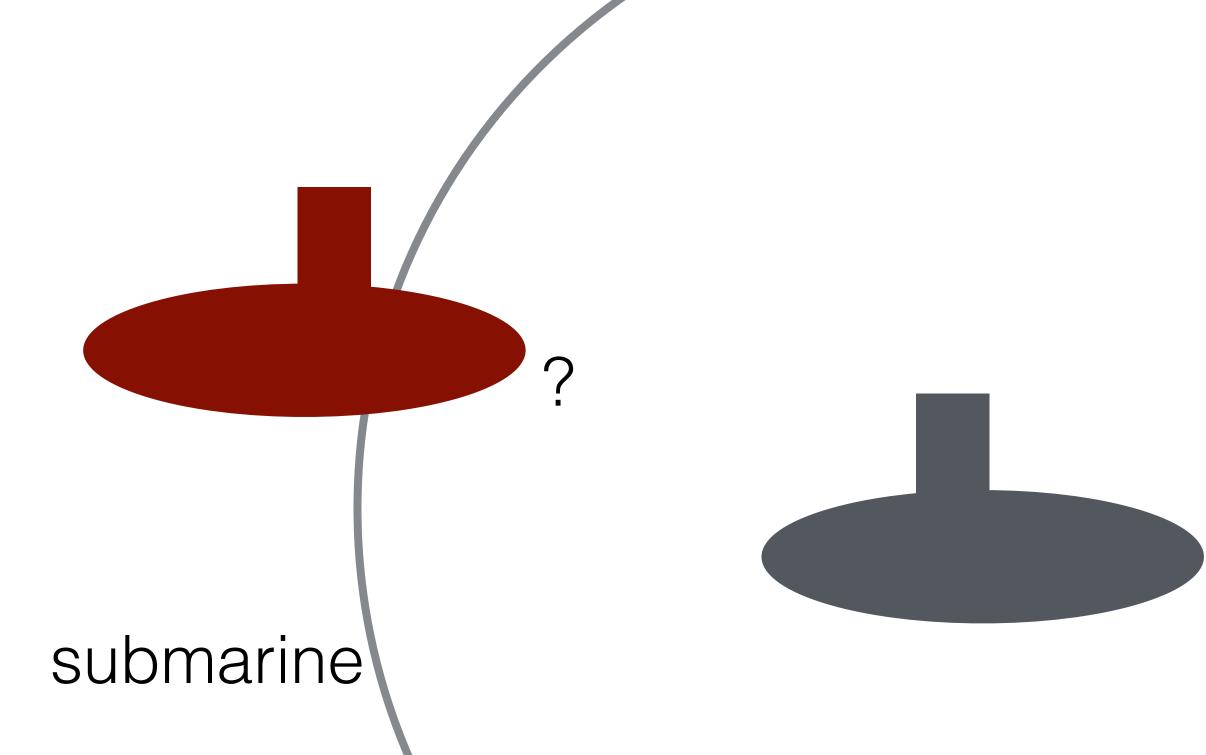
Outline

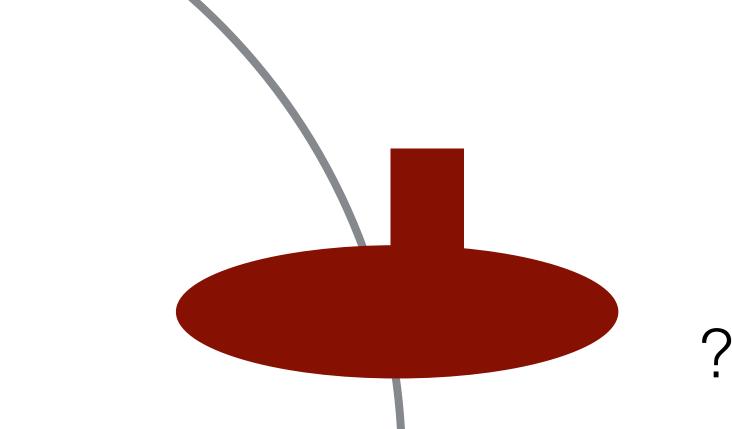


Hidden State Transitions



Hidden State Transitions



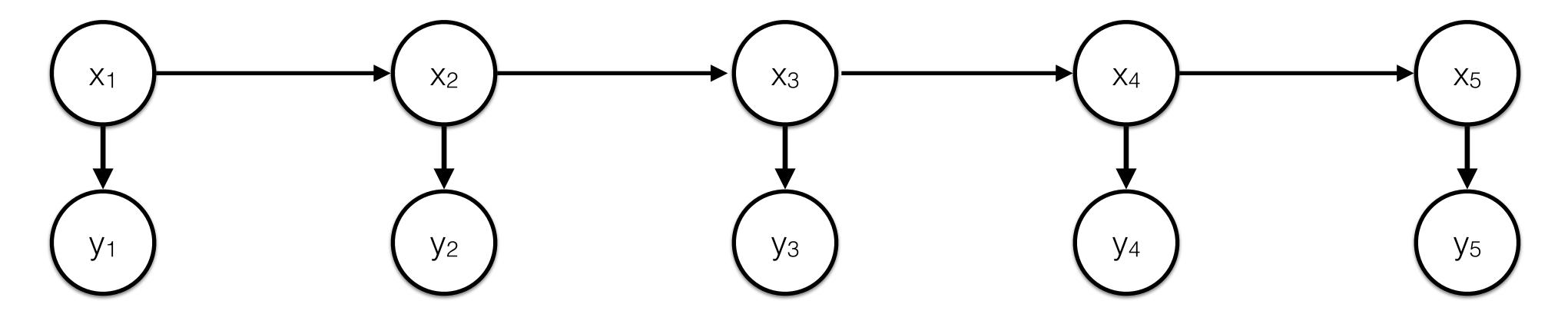


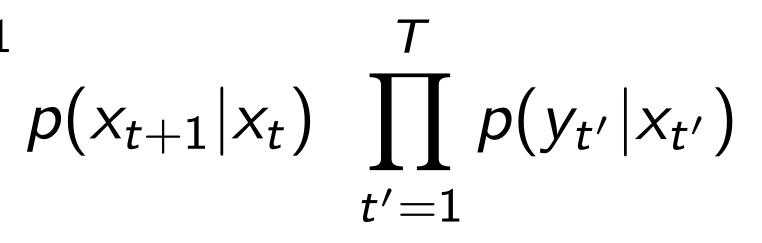
Hidden Markov Models

$p(y_t|x_t)$ observation probability SONAR noisiness

 $p(x_t|x_{t-1})$ transition probability submarine locomotion

$$p(X, Y) = p(x_1) \prod_{t=1}^{T-1}$$





Hidden State Inference $p(X|Y) \qquad p(x_t|Y)$

 $\alpha_t(x_t) = p(x_t, y_1, \dots, y_t)$ $\alpha_t(x_t)\beta_t(x_t) = p(x_t, y_1, \dots, y_t)$

normalize to get conditional probability

note: not the same as $p(x_1, \ldots, x_T, Y)$

$$\beta_t(x_t) = p(y_{t+1}, \dots, y_T | x_t)$$
$$p(y_{t+1}, \dots, y_T | x_t) = p(x_t, Y) \propto p(x_t | Y)$$

 $p(x_1, y_1) = p(x_1)p(y_1|x_1) = \alpha_1(x_1)$

 X_1

Forward Inference

 $\alpha_t(x_t) = p(x_t, y_1, \dots, y_t)$

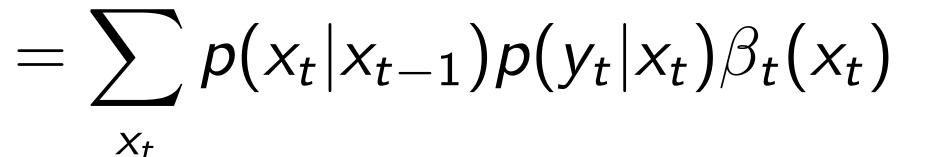
 $p(x_2, y_1, y_2) = \sum p(x_1, y_1) p(x_2|x_1) p(y_2|x_2) = \alpha_2(x_2) = \sum \alpha_1(x_1) p(x_2|x_1) p(y_2|x_2)$

 $p(x_{t+1}, y_1, \dots, y_{t+1}) = \alpha_{t+1}(x_{t+1}) = \sum \alpha_t(x_t)p(x_{t+1}|x_t)p(y_{t+1}|x_{t+1})$ X_t

Backward Inference

 X_t

 $\beta_t(x_t) = p(y_{t+1}, ..., y_T | x_t)$ $p(\{\}|x_T) = 1 = \beta_T(x_T)$ $\beta_{t-1}(x_{t-1}) = p(y_t, \dots, y_T | x_{t-1}) = \sum p(x_t | x_{t-1}) p(y_t, y_{t+1}, \dots, y_T | x_t)$ $= \sum p(x_t | x_{t-1}) p(y_t | x_t) p(y_{t+1}, \dots, y_T | x_t)$



Backward Inference

 $\beta_t(x_t) = p(y_{t+1}, ..., y_T | x_t)$

 $p(\{\}|x_T) = 1 = \beta_T(x_T)$

 $\beta_{t-1}(x_{t-1}) = p(y_t, \dots, y_T | x_{t-1}) = \sum p(x_t | x_{t-1}) p(y_t | x_t) \beta_t(x_t)$ X_t

Fusing the Messages

 $\alpha_t(x_t) = p(x_t, y_1, \dots, y_t)$

 $\alpha_t(x_t)\beta_t(x_t) = p(x_t, y_1, \dots, y_t)p(y_{t+1}, \dots, y_T|x_t) = p(x_t, Y) \propto p(x_t|Y)$

 $p(x_t, x_{t+1}|Y) = \frac{p(x_t, x_{t+1}, y_1, \dots, y_t, y_{t+1}, y_{t+2}, \dots, y_T)}{p(Y)}$ $= \frac{p(x_t, y_1, \dots, y_t) p(x_{t+1} | x_t) p(y_{t+2}, \dots, y_T | x_{t+1}) p(y_{t+1} | x_{t+1})}{\sum_{x_T} p(x_t, Y)}$ $= \frac{\alpha_t(x_t)p(x_{t+1}|x_t)\beta_{t+1}(x_{t+1})p(y_{t+1}|x_{t+1})}{\sum_{x_T} \alpha_T(x_T)}$

 $\beta_t(x_t) = p(y_{t+1}, ..., y_T | x_t)$

Forward-Backward Inference

 $\alpha_1(x_1) = p(x_1)p(y_1|x_1)$ α_{t+1}

 $\beta_T(x_T) = 1 \qquad \qquad \beta_{t-1}$

$p(x_t, Y) = \alpha_t(x_t)\beta_t(x_t)$

 $p(x_t, x_{t+1}|Y) = \frac{\alpha_t(x_t)p(x_{t+1}|x_t)\beta}{2}$ $\overline{\sum}_{X_T}$

$$p(x_t|Y) = \frac{\alpha_t(x_t)\beta_t(x_t)}{\sum_{x'_t} \alpha_t(x'_t)\beta_t(x'_t)}$$

$$\frac{\beta_{t+1}(x_{t+1})p(y_{t+1}|x_{t+1})}{\sigma \sigma(x_T)}$$

Normalization

To avoid underflow, re-normalize at each time step

$$\tilde{\alpha}_t(x_t) = \frac{\alpha_t(x_t)}{\sum_{x'_t} \alpha_t(x'_t)}$$

 $\tilde{\beta}_t(x_t) = \frac{\beta_t(x_t)}{\sum_{x'_t} \beta_t(x'_t)}$

(Normalization cancels out.)

Learning

 Parameterize and learn $p(x_{t+1}|x_t)$

conditional probability table transition matrix

- If fully observed, super easy!
- If **x** is hidden (most cases) treat as latent variable
 - E.g., expectation maximization

$p(y_t|x_t)$

observation model emission model

EM (Baum-Welch) Details

Compute $p(x_t|Y)$ and $p(x_t, x_{t+1}|Y)$ using forward-backward

$$p(x_1) \leftarrow \frac{1}{T} \sum_{t=1}^{T} p(x_t | Y) \text{ or } p(x_1 | Y)$$

$$p(x_{t'+1} = i | x_{t'} = j) \leftarrow \frac{\sum_{t=1}^{T-1} p(x_{t+1} = i, x_t = j)}{\sum_{t=1}^{T-1} p(x_t = j | Y)}$$

Maximize weighted (expected) log-likelihood

e.g., Gaussian $\mu_x \leftarrow \frac{\sum_{t=1}^{T} p(x_t = x | Y) y_t}{\sum_{t'=1}^{T} p(x_t = x | Y)}$

 $p(y|x) \leftarrow \frac{\sum_{t=1}^{T} p(x_t = x|Y) I(y_t = y)}{\nabla T}$ $\sum_{t'=1}^{\prime} p(x_t = x | Y)$ e.g., multinomial

Time Series Bayes Net Summary

- MMs model state transitions
- HMMs represent hidden states
 - Transitions between adjacent states, observation based on states
- Forward-backward inference to incorporate all evidence
- Expectation maximization to train parameters (Baum-Welch) with latent state variables