Homework 0

This is a preview of the published version of the quiz

Started: Aug 25 at 12:28pm

Quiz Instructions

These questions should test your knowledge of the necessary prerequisites for the course. If you struggle with these problems, you will likely have trouble with the course material.

Question 1 1 pts

Given vector $m{b}$, matrix $m{A}$, and that $m{b} = m{A} m{x}$, what do we know about vector $m{x}$? $m{x} = m{b} - m{A}$ $m{w}$ We don't know anything $m{h}$ If $m{A}$ is invertible, then $m{x} = m{A}^{-1} m{b}$ $m{x} = m{0}$ If $m{A}$ is square, then $m{x} = m{A}^{\top} m{b}$

Question 2	1 pts
Define matrix $m{B}=m{b}m{b}^{ op}$, where $m{b}$ is a column vector that is not all zero. Which of the following must	be true?
\bigcirc Some of $m{B}$'s eigenvalues are imaginary.	
\bigcirc All of $m{B}$'s eigenvalues are zero.	
$igcirc$ All of $m{B}$'s eigenvalues are nonnegative and real.	
$igcirc$ All of $m{B}$'s eigenvalues are imaginary.	
$igcirc$ All of $m{B}$'s eigenvalues are positive and real.	

Question 3	1 pts
What is the solution to $\min_x 0.5x^2 + 3x$?	
O -3	
O -4.5	
O 1	
O -0.5	
O 0	
Question 4 Suppose you have a function $d(x_1,x_2)$ that takes in two entities x_1 and	I $oldsymbol{x_2}$ and outputs a comparison or
	computing $oldsymbol{d}$ takes constant time,
Suppose you have a function $d(x_1,x_2)$ that takes in two entities x_1 and distance between the two entities. Suppose you have a set of n entities. If what is the computational complexity in running time of computing the distance	d $oldsymbol{x_2}$ and outputs a comparison or computing $oldsymbol{d}$ takes constant time,
Suppose you have a function $d(x_1,x_2)$ that takes in two entities x_1 and distance between the two entities. Suppose you have a set of n entities. If what is the computational complexity in running time of computing the distance $O(1)$	d $oldsymbol{x_2}$ and outputs a comparison or computing $oldsymbol{d}$ takes constant time,
Suppose you have a function $d(x_1,x_2)$ that takes in two entities x_1 and distance between the two entities. Suppose you have a set of n entities. If what is the computational complexity in running time of computing the distance $O(1)$ $O(2^n)$	d $oldsymbol{x_2}$ and outputs a comparison or computing $oldsymbol{d}$ takes constant time,
Suppose you have a function $d(x_1,x_2)$ that takes in two entities x_1 and distance between the two entities. Suppose you have a set of n entities. If what is the computational complexity in running time of computing the distance $O(1)$ $O(2^n)$ $O(n \log n)$	d $oldsymbol{x_2}$ and outputs a comparison or computing $oldsymbol{d}$ takes constant time,

_ -1000

O 0

$\bigcirc \frac{1}{1000}$	
The answer is undefined.	
) -3	
Question 6	1 pts

If you have two standard six-sided dice, each with uniform probability of landing on each counting number from 1 to 6. What is the probability of rolling doubles (both dice landing on the same number)?

1/12

1/6

6

1.0

1/36

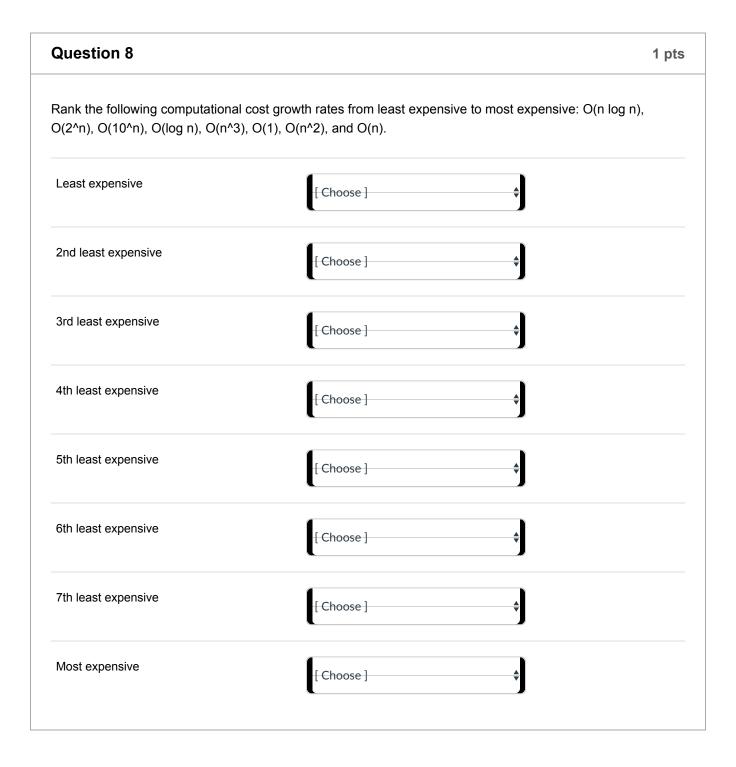
Question 7

Consider the following Python code:

import numpy as np

n = 10

x = np.zeros((n,1))


for i in range(n):

for j in range(i, n):

x[i] = x[i] + 1

After the end of this loop, what is the value of x?

[1	10 10 10 10 10 10 10]
O [1	1 2 3 4 5 6 7 8 9 10]
0 [1	111111111
0 [1	10 9 8 7 6 5 4 3 2 1]

Question 9 1 pts

In (American) roulette, you bet on where a ball will land on a wheel containing 38 numbers, from 1 to 36 and 0 and 00. Each number from 1 to 36 is colored alternating red and black, so that there are 18 red numbers and 18 black numbers. The 0 and 00 are neither color. If you bet on a color and the ball lands on a number with that color, you double your bet. For example, if you bet \$5 on red, and the ball lands on 1, which is red, you keep your \$5 bet and win an additional \$5. If instead the ball lands on 2, which is black, or 0 or 00, which are neither color, you lose the \$5 you bet.

You see a billionaire at the table with you place a \$1,000,000 bet on black. What is the expected value of their investment?

0 .	They will	have an	expected	loss (of \$526,3	15.79
-----	-----------	---------	----------	--------	------------	-------

	The	/ will	have a	n ev	nected	nain	٥f	\$473	684	2
U 1	1110	VVIII	nave a	ICX	pecieu	yaııı	OI.	$\Phi + I O$, 00 4	

Question 10 1 pts

We have two Bernoulli random variables X and Y. Suppose we know that $\Pr(x) = 0.3$, and $\Pr(y) = 0.9$. Given this information, what do we know about $\Pr(X = \text{true} \mid Y = \text{false})$?

All we know is that it is a valid probability between 0 and 1.0

$$\bigcirc$$
 Pr(X = true | Y = false) = 0.3 × 0.1 = 0.03

$$\bigcirc$$
 Pr(X = true | Y = false) = 0.3/0.1 = 3.0

$$\bigcirc$$
 Pr($X = \text{true} \mid Y = \text{false}$) ≤ 0.3

$$\bigcirc$$
 Pr($X = \text{true} \mid Y = \text{false}) = 0.3$

Question 11 1 pts

als are	
>>> x.shape	
(5, 4) >>> a.shape	
(4, 1)	
Which of these commands computes the inner product between y and the 3rd row of x?	
○ x[2,:] * a	
x[2,:].dot(a)	
○ x*y	
np.sum(x * y)	
x[2,:].T * a	
Question 12	1 pts
A random variable $oldsymbol{x}$ in a standard normal distribution has the probability density	
A random variable x in a standard normal distribution has the probability density $p(x)=rac{1}{\sqrt{2\pi}} ext{exp}(-x^2/2)$. Evaluate the integral $\int_{-\infty}^{\infty}p(x)(ax^2+bx+c)dx$.	
A random variable $oldsymbol{x}$ in a standard normal distribution has the probability density	
A random variable x in a standard normal distribution has the probability density $p(x)=rac{1}{\sqrt{2\pi}}\exp(-x^2/2)$. Evaluate the integral $\int_{-\infty}^{\infty}p(x)(ax^2+bx+c)dx$. Hint: this is not a calculus question. Think about statistical quantities you have studied.	
A random variable x in a standard normal distribution has the probability density $p(x)=rac{1}{\sqrt{2\pi}} \exp(-x^2/2)$. Evaluate the integral $\int_{-\infty}^{\infty} p(x)(ax^2+bx+c)dx$. Hint: this is not a calculus question. Think about statistical quantities you have studied.	
A random variable x in a standard normal distribution has the probability density $p(x)=rac{1}{\sqrt{2\pi}}\exp(-x^2/2)$. Evaluate the integral $\int_{-\infty}^{\infty}p(x)(ax^2+bx+c)dx$. Hint: this is not a calculus question. Think about statistical quantities you have studied. 1	

Not saved

Submit Quiz