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Abstract
Redistricting is a necessary and important pro-
cess in any democratic society. Modern tools
used by legislatures for apportionment of dis-
tricts are heavily outdated and rely on archaic al-
gorithms. Most use manual redrawing of lines,
while others use simulators that simply switch
neighborhoods between districts at random until
constraints are met. In this document, I outline
an attempt to provide a more direct and mod-
ern approach by using a modified k-means al-
gorithm. Applying Lloyd’s algorithm to redis-
tricting results in mostly contiguous districts that
meet two of the three main constraints for leg-
islative districts in the US. However, LLoyd’s al-
gorithm does not account for population density
and therefore creates districts with large dispar-
ities in population. My proposed modification
adds a heuristic after the update step to account
for the current size of the districts. By penalizing
districts that already have large populations, the
modified algorithm provides a better population
distribution. The redistricting by the modified k-
means algorithm converged quickly when there
were fewer than 28 districts, but showed signifi-
cant errors for higher numbers of districts.

1. Introduction
For a representative democracy to work, legislators must be
elected to represent the people. Historically, populations
were divided into districts which were then represented by
legislators. The definition of a district varies, but districts
tend to satisfy three constraints:

• Geographic Contiguity Every point in a district
should be reachable by every other point in the dis-
trict through some route that only goes through points
in the district.
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• Population Equality Every district should have
roughly the same number of individuals within it.
State legislatures in the U.S. did not follow this prin-
ciple until a Supreme Court decision established the
“one man, one vote” doctrine in the 1960s.

• Compactness The districts should be as compact as
possible. Definitions of compactness vary, but the
most popular include the perimeter to area ratio and
the distance between the two farthest points in the dis-
trict.

Until the mid-2000s, the most powerful methods for re-
districting still relied on manual adjustments and focused
more on providing humans with the tools necessary to re-
district themselves. By 2007, several attempts had been
made to automate the process of redistricting. Most fo-
cused on optimizing only the three major constraints out-
lined above. Examples of different types of algorithms used
today can be found in (Altman & McDonald, 2010).

Legislative redistricting has no known deterministic poly-
nomial time solution, which is why all redistricting algo-
rithms apply different methods of approximation. My ini-
tial approach was to use a k-means algorithm and see how
well it performed. Once I confirmed that the algorithm
failed at maintaing population equality, I began adding
heuristics to improve the population distribution. Once I
determined the efficacy of the modified k-means approach,
the following step was to apply the Voronoi power diagram
algorithm in (Fryer & Holden, 2011) and compare the re-
sults. Once both were acquired, I planned to modify the
Voronoi algorithm to maximize the number of competitive
districts. However, due to time limitations, this paper only
touches on the modified k-means approach.

2. Input Data
The most accurate redistricting would require data on the
locations of every individual in a region. However, such
data is hard to come by. Instead, most methods rely on
more concentrated measure of population, both to reduce
complexity and to guarantee accuracy. Most past papers
have relied on Census data, particularly populations by cen-
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sus tract, which are the small geographic regions the US
is broken into for the purposes of the Census. My orig-
inal plan was to use populations by zip code, since they
were likely more permanent and could be used in actual re-
districting. However, the populations in zip codes were in
general larger and had more deviation between the smallest
and biggest zip codes. Therefore, I relied on 2010 census
tract population data found on the Census website. The
dataset contains 74,002 census tracts with an average pop-
ulation of 4,223. The largest tract had 37,452 people.

3. k-means Approach
3.1. Lloyd’s Algorithm

I first used Lloyd’s algorithm to see what kind of districting
I would get. The results seemed promising, as shown in
Figures 1 and 2. Each circle represents a census tract; its
color represents which district it was assigned to and it’s
radius is linearly proportional to its population.

Figure 1. Results of redistricting in California using Lloyd’s algo-
rithm.

Cities were seperated into multiple districts, which sug-
gested that they were also being divided evenly in popula-
tion. However, further inspection revealed that even though
the results were better than I expected, the sheer difference
in density between rural and urban areas was not overcome.

Figure 2. Results of redistricting in North Carolina using Lloyd’s
algorithm.

In the North Carolina, for example, some districts only had
a few hundred thousand people, while others had millions.
Although accuracy was low, the algorithm ran within a sec-
ond on California, so performance was not an issue.

Conceptually, Lloyd’s algorithm should always create con-
tiguous districts. However, since I relied on geospatial
locations and Euclidean distances, the presence of water
sometimes resulted in non-contiguous districts. A prime
example can be found in Northeastern Virginia. In some re-
districting results, the district encompassing Northern Vir-
ginia would also contain some census tracts across the river.
Since there tended to be a seperate district to the south of
Northern Virginia, the few tracts across the river became
disconnected from the main district. A simple way to avoid
this problem is to use distances based on land routes, which
could be precomputed. I did not have time to do that, so I
ignored this case because it rarely occurred.

I also attempted to divide districts into equal parts, so that
every district contained roughly 1,000 people. The hope
was that as urban areas were more segmented, Lloyd’s al-
gorithm would more evenly distribute populations across
districts. The results of the algorithm after this change were
almost exactly the same as without the change, but the run
time increased dramatically, so I decided against splitting
the tracts for the remainder of the project.

3.2. Heuristic Modification

My next goal was to modify Lloyd’s algorithm to account
for the different populations of each census tract. The sim-
plest approach would be to modify the maximization step
of Lloyd’s algorithm by only assigning a census tract to
a district if the district’s population was below the parity
level. In mathematical terms, if the total population being
considered is N and the number of districts is K, then we
assign a census tract to a district d with population pd if
and only if pd < N

K . This way, we guarantee that every
census tract will be assigned to a district and that the pop-
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ulation of any district will never be more than N
K + M ,

where M is the size of the largest census tract. However,
this modification has a significant chance of producing non-
contiguous districts. For example, if a tract at an edge of
a state was surrounded by a district that was already full,
then the tract would become a non-contiguous section of
another district. Furthermore, the order in which census
tracts were traversed would greatly alter the results, in ad-
dition to increasing run time.

The approach I decided to use was to penalize districts for
populations that strayed from parity. To simplify calcula-
tions and to avoid extra computations, I multiplied the dis-
tances from a district center to all the census tracts by the
district’s penalty, which was based on the population of the
district after the previous maximization step. If the district
had a larger population than parity (NK ), then the penalty
would be greater than one. Otherwise, the penalty would
be less than one. In effect, the algorithm pushed away all
the census tracts from the districts with large populations,
and pulled in census tracts towards districts with low pop-
ulations.

My first penalty function was simply the population of the
district divided by the parity population. However, the re-
sults were lackluster. The dense districts lost some popu-
lation, but not a lot. The main problem was that even if
a dense district pushed the census tracts far away, the re-
sultant distance was still shorter than the distance between
those tracts and the adjacent districts. Those adjacent dis-
tricts tended to already be large, and hence their centers
were too far away to absorb more census tracts.

To make up for this imbalance, I provided different penal-
ties for districts with populations above and below the par-
ity level. The districts with low populations were multi-
plied by a power of the ratio between the district population
and the parity population. The districts with higher popu-
lations were incremented by a small fraction of the square
of the ratio. This way, the sparse districts could eventually
start taking tracts far from their centers, while the dense
districts wouldn’t push all their tracts away too soon. This
method worked occasionally, but generally failed to con-
verge. When sparse districts crossed the parity line, they
instantously pushed back all the census tracts, which reset
their progress. The mirror result occured with dense dis-
tricts.

Instead of relying on such volatile penalties, I created a cu-
mulative score for each district. Every iteration that a dis-
trict’s population was below the parity level, the district’s
score was incremented by ”-1”. Every time the population
was above the parity, the score was incremented by ”+1”.
The score was then used in place of the parity ratio in the
penalty function described before. This way, if a district’s
population crossed the parity level, it would only go back

one step, instead of resetting to the beginning.

My current algorithm uses this approach and produced the
following results.

Figure 3. Results of redistricting in Virginia using Lloyd’s algo-
rithm.

Figure 4. Results of redistricting in Virginia using the modified
version of Lloyd’s algorithm.

The differences between Figures 3 and 4 are most pro-
nounced in the extremes of density. The western districts
in the original Lloyd’s algorithm were combined in the new
version, while the urban centers of northern and central Vir-
ginia were split into multiple districts. In the modified k-
means districting for Virginia, the greatest percentage dif-
ference between any district’s population and the parity
population was 4.8%. The algorithm got the result in less
than a second.

3.3. Issues

The greatest drawback to the modified k-means is that it
did not converge for larger states. After multiple attempts
to district California (55 districts), Texas (38 districts), and
Florida (29 districts), the algorithm never went below 10%
error. In many cases, it never went below 50% error.
The crude penalty functions I created simply did not scale.
What’s more, the algorithm started to run very slowly once
the number of districts was in the upper 20s, so any addi-
tional modifications I was considering would likely be too
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slow for large states. However, the algorithm did remark-
ably well even with states that had 20 districts. In Figure 5,
the modified k-means approach redistricted with less than
5% error.

Figure 5. Results of redistricting in Pennsylvania using the modi-
fied version of Lloyd’s algorithm.

The fewer the number of districts, the faster and more ac-
curate the algorithm became. In Nebraska, as seen in Fig-
ure 6, the algorithm ran within a second and produced an
error of less than 2%.

Figure 6. Results of redistricting in Nebraska using the modified
version of Lloyd’s algorithm.

3.4. Other Considerations

There are many other modifications I did not have time to
attempt. For example, changing the expectation step so that
the district’s center is a population-weighted average of its
census tracts might have improved convergence; popula-
tion density tends to be proportional to the distance to the
closest urban center, so having a population-weighted cen-
troid would push the centers of sparse districts towards ur-
ban areas and allow them to pick up more census tracts. I
could have also made the penalty values functions of the
distances themselves. In other words, the farther away a
census tract is from a district center, the more effect the

district’s penalty would have on its distance. This way,
the farther districts would be the most affected by penalty
changes, which would likely increase convergance rates
and reduce run times.

4. Voronoi Approach
The modifications I specified above turn out to be very
similar to the ideas used for the power diagram algorithm.
The Voronoi approach is extensively explained in (Fryer &
Holden, 2011). The basic idea is: districting with only the
three constraints mentioned at the start of this paper can
be reduced to a power diagram problem. With this sim-
plification, we can assign weights to each district, λd, that
correspond to its radius in a power diagram. We then run
a gradient descent on the vector of lambdas, minimizing
the error (the largest percentage difference between any
district’s population and the parity population). We will
then end up with a roughly equal distribution of the popu-
lation. We then repeat the process as we would in a normal
k-means. The key difference in this approach is that the
objective function is well-defined and a standard optimiza-
tion approach is used. However, my attempts to emulate
this method did not succeed.

5. Future Work
I hope to implement the Voronoi approach and then maxi-
mize on the number of competitive districts, which are de-
fined as those with a 50-50 split of Democrats and Repub-
licans. I would use data from the 2012 presidential elec-
tion that shows the number of votes for each party by zip
code. The goal is to maximize the number of people who
have a real choice in their representative, instead of hav-
ing entrenched incumbents. The paper that highlighted the
power diagram approach showed how it incorporated dif-
ferent constraints into its algorithm, so I would try to emu-
late that process when adding the competitive district opti-
mization.

6. Conclusion
I implemented a functional modification to the k-means al-
gorithm that works well on states with large populations
and at most 20 districts. The algorithm, as it stands, slows
down significantly and fails when there are at least 28 dis-
tricts. Better penalty functions could improve the modifica-
tion further, but a more promising route would be to instead
implement the power diagram method. The question I set
out to answer still remains: What is the maximum number
of competitive districts we can have in a state? I hope to ad-
dress it in the future once I manage to implement the power
diagram method.
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