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Abstract
The goal of this project is to use machine
learning and computer vision techniques
to identify an object in an image. More
specifically, given an image of a bird, we
would like to identify what species of bird
it is. To do this, we have implemented
a two step process; first identify the char-
acteristics of the bird in the image, then
use those characteristics to predict what
species of bird it is. We have obtained ap-
proximately 83% for our own implementa-
tion of Random Forest using the features
predicted from raw images using KNNs to
identify various features.

1. Introduction

Bird species identification is a challenging problem
as it involves many classification steps. It has many
applications such as endangered animal rescue and
predatory bird identification(1; 2). This mutli-level
classification problem has been extensively studied
in various applications for object identification such
as flower identification, plant identification etc (3).
Many of the previous studies for bird species identi-
fication are based on Caltech-UCSD Bird databases
(4; 5; 6).

Some of the previous studies for handling this prob-
lem involve deep convolutional neural nets (3) or
based on color features extracted from data (2).
In this study we use a mutli-level classification
approach to solve the Bird species identification,
where we first identify a label for 25 bird features
that can be extracted from an image, as mentioned
in a previous study (4). Using the labels obtained
for various features, we further give that as an in-
put for another classifier that identifies the bird
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species based on the labels. For example, a bird
with black primary and back color, white throat
color and white belly color is more likely to be a
Black Footed Albatross. In our approach we first
identify the labels for various features such as pri-
mary color, back color, belly color, throat color and
from an image input. Using these text feature-labels
obtained from image input, we build another clas-
sifier to identify the bird species. In this work we
have evaluated various classifier for feature-label
identification and then used the input from the
feature-labels to build random forest classifier to
identify the bird species. The next few sections in
this project report detail several aspects involved
in data pre-processing, building and evaluating per-
formance of various classifiers.

2. Methods

2.1. Extracting bird features from raw images

2.1.1. BIRD FEATURE DATABASE

In order to learn the different features of a bird
that can help us distinguish between different bird
species, we have used the same 25 features as men-
tioned in the Caltech-UCSD Birds 200 database (4).
Table 1 summarizes the 25 different features and the
number of labels each feature can have. For exam-
ple, the bird’s primary color feature can have 15 dif-
ferent labels such as red, blue, black, blue and so
on.

As mentioned earlier, there are 6033 bird images in
the Caltech-UCSD Birds 200 database. A label for
each feature in Table 1 was identified by workers at
Amazon MechnicalTurk. There are 288 feature-labels
in total (i.e., sum of all values in the second column
in Table 1 is 288). The input data for each image
therefore is a 0,1 vector of size 288:

• 0 if a label for feature is absent
• 1 if a label for a feature is present

For example, if a Turk worker decides that the ‘back
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color’ in an image is blue, then the correspond-
ing value in 1x288 vector for that image is set to
1. As many such workers identify labels for each
feature, there may be conflicts for labels. Therefore,
the database also includes the certainty with which
each of the worker has labeled it:

• 0 if the worker finds that label for a feature is
probably true,
• 1 if the worker is sure beyond doubt and,
• 2 if he is guessing that the label for the feature

is present.

We have converted this certainty score to a confi-
dence score [0,1] averaging over all the worker’s in-
puts. In order to obtain this, we have multiplied
and averaged responses of each Turk worker as fol-
lows:

• 0.5 to the worker’s guess, if the certainty value
is 0,
• 1 to the worker’s guess, if the certainty value is

1, and
• 0.1 to the worker’s guess, if the certainty value

is 2

While this may not affect features that are absent,
we have a value ∈ (0, 1] for features that may be
present in an image. The confidence score ∈ [0, 1]
was converted to a binary {0,1} data using a cut-
off value of 0.5 (i.e., everything below 0.5 was set
to 0 and 1 otherwise). We have used these values
for training the classifiers to automate the process
of identifying values for 288 feature-labels, in order
to eventually use it for bird species identification. If
the same feature has multiple entries for confidence
score beyond 0.5, we have chosen the label with
highest confidence score. For example, if workers
feel that the primary color of a bird is green with
average confidence score 0.6 and blue with an aver-
age confidence score of 0.7 and 0 for all other labels
of primary color; we choose blue as the label for the
primary color feature for that image. Using this ap-
proach we ensured that each image has at most 1
label for each of the 25 features.

2.1.2. BIRD FEATURE EXTRACTION

From the previous step (Section 2.1.1), we have
feature-labels for training and testing data for 25 clas-
sifiers to identify feature-labels for each of the 25 fea-
tures mentioned in Table 1.

The input training and testing data in this step is
the vectorized raw RGB image, scaled to a pixel
size of 100x100, after applying the segmentation

and bounding boxes as obtained from the database.
Therefore, the data is of size 6033x30000 (6033 im-
ages, and vectorized values for scaled RGB im-
age of size 100x100, i.e., image matrix of size
100x100x3).

It is important to note that not all images may have
feature-labels for each feature, i.e., some features
may be absent in an image, such images from input
training data are ignored for training the classifier.
Therefore, not all features have the same length of
training-testing data vectors. In order to evaluate
performance of models for predicting feature-labels
for each of 25 features, we have used the following
classifiers:

1. SVM with Linear Kernel

2. SVM with Polynomial Kernel of order 3

3. SVM with MLP Kernel (tanh)

4. K-nearest neighbors (KNN) classifier

For all the implementations we have used their
MATLAB implementations. The SVM in MAT-
LAB is a One-vs.-All classifier, therefore, we used
a multiclass-SVM which essentially enumerates
whether or not a feature-label is present, therefore a
total of 288 SVM classifiers for identifying a feature-
label for 25 features for each image. Based on their
performances and due to memory constraints as
mentioned in Section 3.1.1, we have chosen KNN
classifier to generate feature-labels for all test im-
ages and used it for bird species classification.

2.2. Predicting pattern features

For predicting color based features like head color
or wing color, we make a single vector of pixel in-
tensities from each of the R,G and B channels of the
input bird image and give this vector as input to our
SVM and KNN classifiers to predict class for the
corresponding bird feature. But for pattern based
bird features like head pattern and wing pattern it
makes little sense to use pixel intensities as inputs.
Input should be something that captures the bird
pattern feature in question. So we used visual bag
of words to summarize an image based on its SIFT
(7) features and pass it as input to our classifier. All
pattern based features are belly pattern, back pat-
tern, breast pattern, head pattern, tail pattern and
wing pattern. Pattern based features have 4 and
11 classes. All except head pattern have 4 classes
whereas head pattern has 11 classes. For 4 class
features the classes are solid, striped, spotted and
multi-colored and for 11 class features the classes
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are malar, eyebrow, capped, eye-ring, unique pat-
tern, striped, spotted, crested, masked, plain and
eyeline.

2.2.1. PRE-PROCESSING

For each input bird image we are provided a
ground truth segmentation for the image by the
MTurk workers as the part of the CUB-200 dataset.
The segmentation is a binary image with I(i, j) = 1
for pixels where bird is present and I(i, j) = 0 for
background.

Figure 1. Original image

Figure 2. Segmentation

Figure 3. After segmentation

We multiply each channel(R, G, B) of the input by
the segmentation to retrieve the segmented image.
This retains the pixels corresponding to the bird

and sets the background pixels to 0 as shown in
Figures 1 to 3. We then crop the segmented image
using the ground truth bounding boxes provided
in the dataset. Finally we resize the cropped im-
age into a 100x100 image. For all of the above op-
erations MATLAB image processing tool box was
used.

2.2.2. EXTRACTING SIFT FEATURES

For each of the images in the database for which the
workers have a high confidence (≥ 0.5) we extract
SIFT descriptors (7). SIFT features are scale and ro-
tation invariant so two visually similar patches in
two or more images will have similar descriptors ir-
respective of their location or scale. For each of the
training image we have nearly 500 128-dimensional
SIFT descriptors.

2.2.3. VISUAL BAG-OF-WORDS

We cluster all the SIFT descriptors extracted in the
previous stage into K = 1200 clusters using kmeans.
The value of K is to be determined experimentally.
And the value of K can differ for one bird feature to
another. For example for head and tail pattern we
used K=1150 while for back, breast and belly pat-
terns we used K = 1200. For some bird features a
value of K = 1200 was resulting in empty clusters
which is why we brought down the value to 1150.
These K SIFT descriptors form our visual vocabu-
lary or the codebook. Each of the descriptors in the
code book captures certain visual patches.

2.2.4. IMAGE HISTOGRAM

For each of the nearly 500 SIFT descriptors ex-
tracted from an image it is mapped to a visual word
from the codebook using euclidean distance as met-
ric. That is, euclidean distance is computed be-
tween the given descriptor and each of the words in
the codebook and the descriptor is mapped to the
word with the least distance from it. For each im-
age a frequency count is calculated for each of the
visual words. As a result each image is represented
by a K bin histogram. We have effectively reduced
the input size from 3 ∗ 100 ∗ 100 = 30000 to K for
an image. And also the input captures information
other than simply the pixel intensity values.

2.3. Random Forest Optimization

Intuitively decision trees and random forests fit
well with the sort of problem we are solving, given
a list of characteristics we want a return of what
overarching label those characteristics belong to. In
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our case, given its wing size/ torso color/ beak
shape/ back pattern etc, we want to know what
species of bird has all of those given characteristics.
We know that random forests generally perform
better than individual decision trees, so wed like to
investigate the different aspects of a random forest
and try to create an optimal implementation. All
models and calculations were executed and evalu-
ated through MATLAB.

We know that tree depth and feature pool size ef-
fect a decision trees performance, but in addition
to that a random forest has its forest size, percent-
age of feature pool used, and percentage of samples
in each tree used as more parameters. In our bird
experiment the feature pool size is not particularly
large at 288, so we decided to used the full set as
our available feature pool. Percentage of samples
available when constructing each tree seems more
of a calculation resource saver than providing any
increase of accuracy. As a result we are primarily
concerned with how maximum depth, forest size,
and percentage of samples available per tree affect
a forests accuracy. As a rule of thumb, forest size
and maximum depth will likely increase the forests
accuracy monotonically, so we are also interested in
the required calculation time in comparison to accu-
racy gain.

To start we attempted a grid search using ten differ-
ent values each for depth, forest size, and percent-
age. These ranged from 1 to 40, 1 to 1000, 0.1 to
1 respectively. After some time it was apparently
that this grid search would take a very long time
on my machine, with an eventual estimate of 120
hours. At this point we felt it was prudent to run a
smaller scale search on another machine, this time
5x5x5. The parameters ranged from 5 to 30, 10 to
1,000, and .2 to 1 respectively. The results are avail-
able in the attached figures. For completeness sake
this was run on the 20 newsgroups data set, using
the 1,000 highest information gain words across the
articles as the feature pool. Plots were created by
using MATLABs scatterInterpolant function on a 50
by 50 grid spanning the parameter space as well as
the surf function. After successfully parsing our me-
chanical turk data, our forest evaluation shift to that
and away from the 20 newsgroup dataset.

When working on the mechanical turk data, it came
to our attention that MATLABs built-in fitctree func-
tion was much more efficient timewise than our
implementation. Additionally it handled the tree
depth parameter for us, and returned higher accu-
racies than our version. Because it handled the max-

imum depth parameter for us, our parameter space
was reduce from three dimension to two dimension,
making grid searches much faster. After finding op-
timal forest size and percentage of features to use,
we compared our new forests accuracy to that of a
single decision tree and the famous k-nearest neigh-
bors model.

After we have an acceptable model for converting
image features to bird species we plan to use our
machine learning/computer vision image features
and predict what bird species the image is of. In ad-
dition to training the model based on the mechani-
cal turk data and then running the computer vision
data through it as the test, we also plan to train the
species model on the computer vision data. This
second implementation cuts the mechanical turk
data completely out of the pipeline from image to
species.

3. Results

3.1. Bird feature extraction

3.1.1. EVALUATING CLASSIFIER PERFORMANCE

To evaluate the performance of the classifiers, we
have used 4 different classifiers namely, SVM classi-
fier with linear, polynomial and MLP kernels and a
KNN classifier. As some features may not have any
feature-label for an image, the input for all 25 feature
classifiers is different. It is important to note: we
maintained the underlying feature-label distribution
for each feature and the 90%− 10% train test split).

As it can be seen from Figure 4, the KNN and SVM
with polynomial kernel outperform the rest of the
classifiers for most of the 25 features. It is impor-
tant to note that the different features have different
number of feature-labels as mentioned in Table 1.
For a 15-class classification for primary color data,
we got highest accuracy for KNN classifier with
30% test accuracy. For a feature like eye color, with
11 different labels, we achieved a highest accuracy
of 95% for SVM with polynomial kernel of order 3
and KNN test accuracy was close to 91%. However
it is important to note that a majority of labels in
eye color were black and the classifiers tend to pre-
dict black for almost all the images and resulted in
a high eye color accuracy.

3.1.2. FEATURE-LABEL GENERATION

While training SVM requires a one-vs-all classifier,
and results in 288 classifiers as opposed to 25 KNN
classifiers and resulted in insufficient memory is-
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Figure 4. Summary of of all testing accuracies obtained for each classifier for 25 features and 90%− 10% train-test split
for each feature.

sues. We therefore used KNN classifier from the
four classifiers under consideration for generating
feature-labels for testing the random forest perfor-
mance to identify bird species.

For predicting feature-labels for bird species clas-
sification, we have used 90% of the input data as
train data (5430 images) and 10% of the data (603
images) for testing. As training is performed on
subset of 5430 images which actually have a Turk
worker’s determined value, we still predict a label
for all 25 features for test data (of 603 images) irre-
spective of whether or not it is present in that im-
age. Intuitively, any inconsistency in the predicted
result for one of the 25 bird features for test images,
will be addressed by the Random-Forest implemen-
tation depending on how informative that label can
be. For example, all bird images may not have a dis-
tinguishable eye color, but such feature will have
low information gain in the Random-Forest stage,
therefore it probably would not affect the final bird
species recognition by a lot.

3.2. Bird pattern features

We extracted histograms from the images corre-
sponding to the each pattern feature. This was
given as input to SVM and KNN. We trained SVM
models with linear, polynomial(order 3) and mlp
kernels. Below are the results we got.

Figure 5 compares the SVM and KNN accuracies
for all patterns. The best accuracy of 76.6 % was
obtained for SVM with polynomial kernel for belly
pattern. The head, tail and wing patterns were ob-
served to give low accuracies. This could be be-
cause since head, tail and wing parts occupy less
number of pixels in the images, it is possible that
not many descriptors from these regions have been
represented in the codebook.

Next, we compare the performance of patterns giv-
ing best accuracy with the performance for those
patterns using only image intensity values as in-
put. Figure B.3 gives compares performance for
back pattern using old and new methods. Back
pattern was observed to give an accuracy 62% for
SVM with polynomial kernel. This is slightly lower
than old accuracy. For back pattern the accuracy de-
creased for all SVM classifiers compared to the old
method. But accuracy for KNN was observed to
have shot up by nearly 10%.

For belly pattern accuracies increased marginally
for all methods and a highest overall accuracy of
77% was observed for SVM with polynomial kernel.
Results can be observed in Figure B.4

Performance improvement was observed for all
methods for breast pattern and a highest accuracy
of 70% was observed for SVM with polynomial ker-
nel. Figure B.5 reflects these results.
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Figure 5. Performance for all pattern based features

Some advantages of this method are that it reduces
the data size significantly and hence saves compu-
tational resources. Image is represented by a length
K vector instead of a length 30000 vector. And it
is much simpler to implement and deploy than the
methods giving state of the art performances using
convolutional neural networks (3). But also features
have to be pre-computed and stored beforehand un-
like convnets that learn features while training. The
K value has to be determined experimentally.

3.3. Random Forest Optimization

As expected increasing the depth of the trees in a
random forest, as well as increasing the number of
trees in a forest increase their accuracy. There is
some randomness in results however, as the suc-
cess of a forest is in part dependant on the random
assignments of features into the trees. For exam-
ple one forest with 300 trees might have .68 accu-
racy, and a similar forest with 400 trees might have
.67 accuracy. Generally speaking however, accuracy
only goes up with deeper trees and wider forests.
Figure B.6 Compared to required calculation time
however, there is stark diminishing returns for the
two parameters. For example in the 20 newsgroup
dataset a forest of 200 trees and 20 depth might have
.56 accuracy and take 3 minutes to compute, while
a forest of 1,000 trees and 30 depth might have a
.59 accuracy and take 30 minutes to compute Fig-
ure B.7. If either the depth or forest size remains
small, calculation time remains small, but if both
are large they build off each other and can achieve
very long calculation times. It appears that time in-

creases linearly with forest size, and super-linearly
with maximum depth.

Feature percentage is a less straightforward param-
eter to evaluate. If 100% is used then every tree
in the forest is identical and has the same result
as if the model was a single full tree. From there
accuracy is improved by decreasing the percentage
used, but the other extreme is that 0% of the features
are used in each tree and no information is gained.
Generally, the more trees in a forest the lower the
optimal percentage of features is. For one data set it
may be optimal to use 50% of the features in a forest
of five trees Figure B.8, and for the same data set it
may also be optimal to use 10% of the features in a
forest of 500 trees. Figure B.9 This larger forest with
less features has a higher prediction accuracy than
the smaller forest if all other parameters are held
constant.

After parsing the mechanical turk data and running
grid search over it, the optimal parameters seemed
to be some percentage of features between .20 and
.40, and a forest size of anything over 100. Any
parameters within those margins returned a .70 to
.72 prediction accuracy ratio, with variance due to
the stochastic nature of the forest. Using the fitc-
tree function, forest size and percentage of features
affected calculation time very similarly to the for-
est size and max depth did in the 20 newsgroups
data. Figure B.10 Its very likely that the fitctrees
maximum depth is dependant on the number of fea-
tures passed to it, in this case passing it 10% fea-
tures creates more shallow trees than passing it 90%
features. Interestingly though, some of the forests
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Figure 6. Summary of all testing accuracies for bird species as a whole.

worst performance was in the 100% features used
space, which also had the highest required calcula-
tion time.

Figure B.11 In this case optimal model accuracy is
not dependant on higher and higher calculation re-
quirements. Overall, with our training and test-
ing on mechanical turk data (confidence ratings for
each feature rather than binary features) a single
decision tree had a .38 testing accuracy, k-nearest
neighbors had a .61 testing accuracy, and our ran-
dom forest had a .72 testing accuracy.

3.4. Putting it all together

After receiving our computer vision predictions for
image features for our testing set, we ran that data
through our preexisting model which was trained
on the mechanical turk data. The result was a .83
testing accuracy, actually higher than when are im-
age features were from the mechanical turk confi-
dence scores. This result is unintuitive and diffi-
cult to explain. Perhaps because the mechanical
turk data was curated by multiple individuals with
an imperfect labeling scheme (i.e., a bird with a
white and black torso might be black to one person
and white to another), the computer vision might
be more consistent in what it classifies a specific
species to look like. Using our different models for
this computer vision train to computer vision test,
a single decision tree had a testing accuracy of .627
and k-nearest neighbors had a testing accuracy of
.852. These results corroborate the phenomena of vi-
sion training improving our overall species predic-

tion accuracy, with an overall increase in all models
after switch from the turk confidence score set (see
Figure 6).

4. Conclusions

Overall our plan to take a bird image and predict
its species was successful. We classified many dif-
ferent attributes of an image, the vast majority of
which had a successful prediction rate of less than
70%, and combined them in such a way as to accu-
rately predict the species with over 80% accuracy.
Keeping in mind that each image could have been
one of 200 different species, approximately a 0.5%
guessing accuracy, this accuracy is a huge improve-
ment. With the help of image segmentation, our
random forest model at 83% and KNN at 85%. We
however did not make a direct comparison with
other methods that tackle a similar bird identifica-
tion problem(3; 2), as they have their own methods
for background removal and feature identification
instead of directly using segmentation provided by
MechanicalTurk workers.

In the implementation, one versus all kernel SVMs
occasionally outperformed KNN in image feature
recognition. However the SVM models took up
unsustainable amounts of memory, so we opted to
use KNN to predict image features. Optimizing a
random forest gave us some insights into how all
their different parameters interact with each other,
and outperformed both single decision trees and
KNN when testing on mechanical turk data. How-



Birds in a Forest

ever once the image to species pipeline was con-
structed, KNN performed on par or better than our
random forest. This may be because the mechan-
ical turk data was confidence scores from 0 to 1,
where the computer vision prediction was a single
binary label for each image feature. We propose
that this work can be further extended by using var-
ious computer vision techniques for background re-
moval from raw bird images instead of using seg-
mentation by manual effort thereby automating the
process of bird species identification.
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Appendices

A. Table containing information on distribution of various features image data

Feature Number of labels Number of images containing each feature

back color 15 3169
back pattern 4 3105
belly color 15 4239
belly pattern 4 4322
bill shape 9 4387
breast color 15 4521
breast pattern 4 4511
crown color 15 4858
eye color 14 5049
forehead color 15 4685
head pattern 11 3341
leg color 15 2811
nape color 15 4024
primary color 15 4721
shape 14 4571
size 5 4161
tail pattern 4 2738
throat color 15 4727
under tail color 15 2721
underparts color 15 4246
upper tail color 15 2636
upperparts color 15 3767
wing color 15 4050
wing pattern 4 3968
wing shape 5 1208

Table 1. Summary of 25 different features extracted from each image and the number labels each of the features can
take. Not all 6033 images from the input contain all the features, the third column shows how many images out of 6033
have a label with ≥ 0.5 confidence score for Turk worker’s labeling.
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B. Accuracy for various SVMs and KNN separated for features with different number
of classes

Figure B.1. Summary of of all testing accuracies obtained for each classifier for features which have greater than 14
labels each and 90%− 10% train-test split for each feature.

Figure B.2. Summary of of all testing accuracies obtained for each classifier for features which have greater than 14
labels each and 90%− 10% train-test split for each feature.
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Figure B.3. Comparing original and new back pattern performance

Figure B.4. Comparing original and new belly pattern performance
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Figure B.5. Comparing original and new breast pattern performance

Figure B.6. Surf plot for accuracies of 20newsgroups data using 0.20 feature pool in each tree.
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Figure B.7. Surf plot for calculation time of 20newsgroups data using 0.20 feature pool in each tree.
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Figure B.8. Surf plot for accuracies of 20newgroups data using 5 trees in each forest.
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Figure B.9. Surf plot for accuracies of 20newgroups data using 500 trees in each forest.
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Figure B.10. Surf plot for accuracy of mechanical turk data for bird features.
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Figure B.11. Surf plot for calculation time of mechanical turk data for bird features.
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