
Simulated Transfer Learning Through
Deep Reinforcement Learning

William Doan WILLRD9@VT.EDU
Griffin Jarmin GAJARMIN@VT.EDU

Abstract
This paper encapsulates the use reinforcement
learning on raw images provided by a simulation
to produce a partially trained network. Before
training is continued, this partially trained net-
work is fed different raw images that are more
tightly coupled with a richer representation of the
non-simulated environment. The use of transfer
learning allows for the model to adjust to this
richer representation of the environment and the
network eventually exhibits desired behaviours
in the real world. This is due to iteratively train-
ing the network on gradually more accurate sim-
ulated representations.

1. Introduction
Control theory has traditionally been used and extensively
studied in the field of robotics. The field of control theory
has developed many useful approaches to solving robotic
control such as (M.). While these methods have seen great
success in a number of practical applications, they have
shortcomings. Some examples of said shortcomings are
control algorithms’ reliance on noisy sensor data, inabil-
ity to handle non-linear environments well, and difficulty
modelling the stochasticity of the environment.

In this paper we present a different method of robotic con-
trol. The method used in (Mnih et al., 2013) provided
a good foundation for applying reinforcement learning to
high dimensional input data. The generalization power of
the convolutional neural network that is used in the deep Q-
learning algorithm alleviates the concern surrounding noisy
sensor data. Also, rather than hand engineering features the
modeller deems important, we allow the learning algorithm
to decide what features are important.

As shown in (Mnih et al., 2013), a large number of training
iterations are needed in order to successfully train a model.

Virginia Tech CSx824/ECEx424 final project report. Copyright
2016 by the author(s).

It is impractical to obtain a sufficient number of real world
examples to achieve convergence. This requirement intro-
duces the need to simulate the environment. Using this
simulation we can train on the simulation-produced exam-
ples rather than real examples. The goal of this paper is to
show that by using standard training methods on a deep q-
network in simulation, and gradually introducing data more
similar to what is produced by the real environment, we can
obtain desired results.

2. Related Work
2.1. Reinforcement Learning in Robotics

Using reinforcement learning as a technique to obtain de-
sired behaviour from a robotic vehicle is not a novel con-
cept. As (Mahadevan & Connell, 1991) shows, the use
of reinforcement learning in order to program behaviour
based robots can be reasonably achieved. Furthermore,
the (Mahadevan & Connell, 1991) also utilizes the concept
of Q-learning to program desired behaviours. This paper,
based off of (Mnih et al., 2013), uses a function appropria-
tor to represent the action-value function which will be dis-
cussed in a later section. However, (Mahadevan & Connell,
1991) utilized the vanilla Q-learning function. (Mahade-
van & Connell, 1991) mentions that prior attempts to im-
plement Q-learning with respect to robots were monolithic,
meaning that a single action or behaviour was desired from
the robot. (Mahadevan & Connell, 1991) presents a robot
that is manually programmed to select between multiple Q-
functions dictated by temporal conditions. The robot being
implemented in this work has access to a multitude of ac-
tions and desired behaviours that are dependent on condi-
tions that the algorithm learns, rather than designer-defined
conditions.

2.2. Transfer Learning

Q-learning requires a series of example situations in order
to explore the state space of the environment. This essen-
tially samples state sequences to gain information about the
environment, actions, and rewards. The authors of (Ma-
hadevan & Connell, 1991) actuated 2000 iterations to pro-



Simulated Transfer Learning

vide the Q-function with a sufficient amount of information
about the state space. We thought that this was a very inef-
ficient way to train our robots, especially since the state
space and the available actions in our set-up was vastly
larger. This was a great opportunity to take advantage of
transfer learning. Transfer learning, as defined in (Tor-
ren & Shavlik, 2009), is the improvement of learning in a
new task through the transfer of knowledge from a related
task that has already been learned. In this work, it was de-
cided to create a rough simulation of the expected environ-
ment. The deep Q-network network was to be trained on
the rough simulation, transferred to a more realistic simu-
lation, trained some more, and finally tested on real-time
images from the non-simulated environment. As (Yosin-
ski et al., 2014) studies, the first-layers of a convolutional
neural network are essentially generalized edge detectors.
The latter layers of the neural network learn more com-
plex and non-linear features of the data. The inspiration
to use transfer learning came from the expectation that the
first layers of the deep Q-network would learn the basic
edges of the images. Just as the more pronounced features
came to activate the deeper layers, new images would be
fed into the network. This would hopefully result in the
network learning a very simple, yet rough interpretation of
the expected environment. As the real environment came
to be, the input images would be modified. We would have
to ensure that the Q-learning algorithm will have sufficient
explorative ability during theses representation transitions.

3. Background
The novelty presented by (Mnih et al., 2013) was to use a
convolutional neural network (CNN) as a function appro-
priator in the traditional Q-learning algorithm. The goal
of Q-learning is to find the optimal policy π that maps se-
quences to actions. We look at a task where an agent in-
teracts with an environment E , in a series of actions and
rewards. As is true in most reinforcement learning settings,
at each time-step the agent selects and action at which is
part of the set of all legal actions A = {1, ...,K}. This
action is then executed in the environment. The execution
of this action results in a modification of the state xt ∈ Rd,
which in our case is an image, and a scalar reward rt. Due
to the fact that the current state is not fully represented
by the current image xt we consider sequences of states
st = x1, a1, ..., , at−1, xt and learn from these. The job of
π is to chose the action that will maximize the future re-
ward. The need for the function appropriator arises from
the difficulty of evaluating future reward. The number of
states to explore increases by a factor of K for each time
step you estimate in the future. This makes it necessary to
approximate each action’s future reward. In traditional Q-
learning the future reward is referred to as the Q-value and

is given by the Q-function, defined as

Q∗(s, a) = Es′∼ E [r + γmax
a′

Q∗(s
′
, a

′
)|s, a] (1)

Where γ is the rate at which we discount future rewards.
However, now we examine what this algorithm looks like
with a function appropriator. The output of your CNN is
defined as Q(s; a; θ). Using this we can define a loss func-
tion

Li(θi) = Es,a∼ p(·)[(yi −Q(s, a; θi))
2] (2)

yi = Es′∼ E [r + γmax
a′

Q(s
′
, a

′
; θi−1)|s, a] (3)

where yi is the target for iteration i and p(s, a) is a proba-
bility distribution over sequences and actions.

The architecture proposed by (Mnih et al., 2013) uses an
image of the current state as input to a CNN and has
the output be the Q-value for each legal action. In or-
der to get some temporal dependence when making a de-
cision the last n state images are concatenated as input,
x = xt, xt−1, ..., xt−n. In order to allow for a more vast
exploration of the state space, actions are chosen on an ε-
greedy policy that selects the maximizing move with prob-
ability 1 − ε, otherwise it chooses a random move. As the
number of training iterations increase ε is slowly decreased.

4. Simulated Transfer Learning
We hypothesize that a deep Q-network trained on a simula-
tion of an environment could be used as a starting point for
training on data collected from the real environment. This
would allow you to apply the deep Q-learning algorithm to
robotics. As stated previously, it would not be feasible to
perform the number of iterations needed to train a deep Q-
network with data examples collected solely from the real
world. If you used a simulation-trained model as a starting
point for real world training, then you could potentially de-
crease the number of real world training iterations needed
by several orders of magnitude.

Unfortunately, at this point in time we do not have the in-
frastructure needed to apply transfer learning in real life. In
order to test our hypothesis, we will simulate the transfer
learning. To do this we train a model using one image rep-
resentation of our environment, then after some number of
iterations we switch the image representation. The idea be-
hind this is that our simulation won’t perfectly capture the
environment and if our model is able to start out better than
random after the switch is made, and then continue learn-
ing, then the real life transfer learning would most likely be
successful as well.



Simulated Transfer Learning

Figure 1. Image of what the input to the CNN looks like initially.

Figure 2. Image of what the input to the CNN looks like after the
switch is made.

5. Deployment
5.1. Mapping Actions

The simulation presents a series of actions to the rover that
are available for execution during training. The actions the
rover may take at any state include moving backwards and
forwards at various speeds as well as the option of apply-
ing no power to the motors at all.The simulation consists
of a one dimensional series of spaces to be occupied by
the rover at any one time. The size of this vector space
was 38 discrete locations. To ensure consistency of in-
tended moves from the simulation to the true environment,
a mapping was required. Of all available actions produc-
ing movement, timed experiments were run to ascertain the
time required to go from one side of the simulated envi-
ronment to the other. After measurements were obtained,
various motor commands were tested in the non-simulated
environment. The motor commands that produced the same
times to cross the real environment were selected as a map-
ping to represent the respective actions in simulation.

5.2. Image processing

As with many hardware sensors used in practical applica-
tions, noise is a rather large concern. This factor, coupled
with the need to simulate an unseen environment, resulted
in many uncertainties of what exactly we expected to ob-
serve. For this reason, processing of the obtained images
was needed to better match the modelled environment. Ini-
tial steps were taken to reduce the burden of processing on
the embedded system by placing infra-red LEDs atop the
robots, removing the IR filter within the camera sensor, and
finally placing a visible light filter in-front of the sensor.
This simplified the original image contents. The process-
ing began with a conversion to a mono-chromic bitmap.
Then, the image was rotated to be perpendicular with the
borders to eliminate any angular discrepancies between the
camera and the environment. This rotation was followed
by a cropping that produced a square image. This square
image was then resized to 50x50 to match the needs of the
input layer to the convolutional neural network. The re-
sized image was sent through a filter that removed excess
noise and reflections from the borders of the environment.

Figure 3. This is an example of the raw input captured by our cam-
era.

Figure 4. This is an example of an image after pre-processing. As
you can see it resembles the images we used in simulation.



Simulated Transfer Learning

6. Experiments
6.1. Model and Simulation Architecture

Our simulation dealt in a 50x50 world. A ball was shot
at random angles and speed towards our agent. The agent
was rewarded 1 point for coming in contact with the ball,
it was penalized 1 point (-1 reward) for allowing a goal.
These are the only two states that had a reward, all other
states had 0 reward. We used almost the same architecture
described in (Mnih et al., 2013), but changed up the filter
sizes in our CNN to accommodate for differences in input
image size. The input to the CNN consists of an 50x50x4
image, representing the last 4 time steps concatenated into
one image. The first hidden layer convolves 16 15x15 fil-
ters with stride 4, followed by a non-linearity. The second
hidden layer convolves 32 4x4 filters with a stride of 2,
again followed by a non-linearity. The final hidden layer
is fully-connected and consists of 256 non-linearities. The
output layer is a fully connected linear layer with a single
output for each valid action.

6.2. Description of Experiment

We trained the deep Q-network for approximately 900,000
iterations using the image representation seen in Figure 1.
After that point in time we froze the weights in the CNN
and changed the image representation to that seen in Fig-
ure 2. We continued training for around 40,000 iterations
and observed the results. At the same time, we continued
to train using the image representation to compare its re-
sults moving forward. We hypothesized that we would see
a drop in average Q-value, and a rise in cost when making
the switch to the different image representation. However,
we expected that they would both rebound as iterations in-
creased.

7. Results
Here we show results from the experiments described
above.

Figure 5. This graph shows our initial training on the images from
Figure 1. It shows that through training you are able to increase
your average Q-value. This means that the algorithm expects a
higher future reward, which is a proxy to overall performance.

Figure 6. This graph shows the cost function decreasing over time
in our initial training. This tells us that our model is learning to
predict future reward more accurately over time.

Figure 7. This image shows the average Q-value after we froze the
weights from training and changed the input images to those seen
in Figure 2. As you can see, the average Q-value drops initially
due to the differences in input images, however the algorithm is
able to continue training with the new images and recover from
the initial drop.

Figure 8. Comparing this graph to the one seen in Figure 6, you
can see that the loss starts at a much higher value than what Figure
6 ended at. This is presumably due to the differences in input
images. You can see a minor increase in cost that correlates to the
decrease of the average Q-value seen in Figure 7. Over time the
algorithm is able to continue improving by decreasing the cost,
despite the change in input images.



Simulated Transfer Learning

Figure 9. This graph shows the results of each episode when con-
tinuing to train our original model for another 40,000 iterations.
As you can see at this point, the model is more or less trained.
It achieves a save percentage of about 98% over apporximately
2,000 episodes.

Figure 10. This graph shows the results of each episode when
switching the input images to the ones shown in Figure 2. As you
can see, the results are comparable. The save percentage when
using the different images was approximately 97%. This shows
that although there was an initial drop in the average Q-value, the
overall performance of the system was not impacted heavily.

8. Conclusion and Future Work
The goal of this paper was to show that by using standard
training methods on a deep Q-network in simulation, and
gradually introducing data more similar to what is pro-
duced by the real environment, we can obtain desired re-
sults. In our experiment we simulated this by training on
one image representation, then switching to another one
while keeping all model parameters constant. Our results
showed that while there was an initial drop in performance
after the switch, the overall performance was not heavily
impacted in the end. We also showed that it is possible
to continue training with the new image representation and
achieve improved results. We believe this shows that you
could train a model in simulation, then use that model as
a starting point to test in a real environment. This should
reduce the amount of training iterations needed to achieve
desired results in the real world.

In future work we would like to test our hypothesis in the
real world. As of now, the infrastructure to do learning on
data from the real world is not in place. While our sim-
ulated transfer learning results are favourable, it would be
interesting to see if transfer learning from simulation to the
real world improves the performance of the agent in the
way we saw in this paper.

References
M., Araki. Pid control.

Mahadevan, Sridhar and Connell, Jonathan. Automatic
programming of behavior-based robots using reinforce-
ment learning. In Proceedings of the 9th National Con-
ferance on Artificial Intelligence (AAAI-91), T.J. Watson
Research Center, Box 704 Yorktown Heights, NY, 1991.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. Technical report,
Deepmind Technologies, December 2013.

Torren, Lisa and Shavlik, Jude. Transfer learning. In So-
ria, E., Martin, J., Magdalena, R., Martinez, M., and Ser-
rano, A. (eds.), Hanbook of Research on Machine Learn-
ing Applications. IGI Global, 2009.

Yosinski, Jason, Clune, Jeff, Bengio, Yoshua, and Lipson,
Hod. How transferable are features in deep neural net-
works? Technical report, 2014.


