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Abstract

In this paper, we present a system for real-time
recognition of user-defined static hand gestures
captured via a traditional web camera. We use
SURF descriptors to get the bag-of-visual-words
features of the user’s hand, and use these features
to train a multi-class supervised learning model.
We choose the best learning model from (SVM,
Neural Networks, Decision Trees, and Random
Forests) and the best model parameters using
hyper-parameter optimization algorithm. During
test time, we use these bag-of-visual words fea-
tures to predict the users hand gestures. The user
has the ability to give positive or negative feed-
back for every prediction to the system, and the
system updates itself during test time for better
accuracy.

1. Introduction
1.1. Motivation

A Natural user interface, or NUI, is a type of user interface
that uses a users natural abilities such as speech or body
movements as modes of communication with a computing
system (Wigdor & Denis, 2011). It is believed by many
that NUI’s will revolutionize the way a user interacts with
a system because this type of interface is invisible and can
be intuitive to the user, as opposed to interfaces that in-
volve contemporary keyboards, mice, touchscreens or joy-
sticks. One common mode of interaction is via hand ges-
tures. By leveraging their hand gestures, users can interact
with a system very effectively and intuitively, as it provides
a rich mode of communication. Hand gesture recognition
is an advancing field that finds its usefulness in robot nav-
igation, HCI, automated homes, virtual games, augmented
reality, wearable devices, and various other applications.
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1.2. Problem

Hand gesture recognition is a problem of classification. A
gesture recognition system must be able to read in inputs
and predict the correct gesture. Because gesture recogni-
tion typically uses a camera to observe the gestures, this
problem falls into the fields of computer vision for data ex-
traction and machine learning for classification. Capturing
and recognizing the hand gesture is a complex problem that
typically requires multiple steps.

1.3. Approach

Figure 1. System Overview

Our approach to the problem could be broken into three
main steps. The first involves feature extraction. In this
step, we do a set of operations on the input webcam feed
to detect and track the hand, and finally extract the bag-of-
visual-words features from the hand. We use a user-in-the-
loop approach to find a robust foreground hand segmenta-
tion, as described in section 3.1. Once the blob correspond-
ing to the hand is found, we define a bounding box around
it as our region of interest (ROI). We smooth the tracking
of the ROI by using a Kalman filtering. This Kalman fil-
ter reduces the susceptibility of our system to the noise in
foreground segmentation.

Once we have smooth tracking of the ROI, we use SURF
descriptors from within this ROI to find ’k’ visual words
using k-means clustering algorithm. We then quantize the
SURF descriptors of each input frame into these ’k’ visual
words and get the bag-of-words (BOW) features represent-
ing the frame.

We train our system using a supervised learning model, like
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a multi-class one-vs-rest Support Vector Machine or a Neu-
ral Network. We use the BOW features of 100-500 valid
frames of each gesture as our training data. We validate
the frames by putting thresholds on the minimum number
of SURF descriptors in the frame and maximum number
of convexity defects in the hand contour. We then optimize
and compare the performance of different supervised learn-
ing models for our use-case, which we show in section 4.3.
The trained supervised learning model gives us an estimate
of the initial weight vectors (θ) for the reinforcement learn-
ing model.

During test time, we extract the BOW features for each in-
put frame of the webcam feed. We calculate the Q-value
Q(s,a) of each gesture prediction (a) for the input (s), us-
ing the weight vectors (θ) of the gesture labels. For ev-
ery BOW feature state (s) the gesture with highest Q-value
is predicted. For the system to improve its accuracy dur-
ing test time, we give the user the ability to give nega-
tive/positive feedback for the previous 10 predictions of the
system. Based on the user feedback, the system updates the
weight vectors (θ) of the gesture labels, using a reinforce-
ment learning model.

2. Related Work
Gesture recognition is not a new idea and a great deal of
research has been done in the area. One approach for ges-
ture recognition with traditional webcams is to use cues like
the hand contour geometry or the number of convexity de-
fects in the contour to predict the hand gesture. However,
this works only for very simple hand gestures. Another ap-
proach is via template matching (Khaled & Ali). For this,
one needs to save all the training templates for matching
during test time, and it clearly falls short for real-time ap-
plications.

One popular approach for hand gesture recognition is to use
Haar-like features with AdaBoost learning algorithm (Chen
& Petriu, 2008). While this approach performs relatively
well, it requires a very long training time and a huge data
set to train on. Also, it is relatively harder to update the
weak classifiers during test time based on user feedback,
which is essential to our system. Some approaches do use
bag-of-words features to classify a fixed set of gestures us-
ing a classifier pre-trained on a huge data set (Dardas &
Georganas, 2011). This one-for-all strategy takes away the
ability of the user to personalize his gestures. Also, if the
classifier predicts wrong gestures, there is no way for the
user to give his feedback to the classifier and update the
system. This calls for a better strategy to tackle this prob-
lem.

Similarly, for hand segmentation and tracking, some ap-
proaches use fixed skin color profiling (Dardas & Geor-

ganas, 2011) or active contours (Jang & Moon, 2007).
However, we found the fixed color segmentation to not per-
form too well with different users and backgrounds, and
active contour method to be very slow for our real-time ap-
plication.

Because gesture recognition is a classification type prob-
lem many types of learning models can be used to solve it.
Some of the most common models being used are varia-
tions of the SVM like discussed in (Wu & Huang, 1999).
However, other learning models can be used to train the
system as well.

Researchers from University of Waterloo and MIT
(Bergstra & Cox, 2013) have devised an algorithm to op-
timize and find the best machine learning algorithm for
the data being used. Hyperopt provides an library of algo-
rithms and infrastructure for performing hyper-parameters
optimization in Python.

3. Technical Contribution
3.1. Feature extraction

We propose a novel approach for feature extraction. For
hand segmentation, we initially provide a set of fixed win-
dows to the user on the webcam feed. The user is asked
to fit his hand over these windows. On triggering the sys-
tem, the user’s hand color profile is extracted from all these
windows. The binary foreground masks extracted from
all these windows are added and a median blur is per-
formed along with other morphological operations to get
a robust foreground segmentation of the hand even in clut-
tered background.

Figure 2. Set of windows presented for hand color profiling

Once we find the blob corresponding to the user’s hand, we
smoothen the tracking of our region of interest (ROI) using
four linear Kalman filters (two for x-and-y coordinates of
the top-left corner of the bounding box of the hand, and one
each for the height and the width). This reduces the suscep-
tibility of our system to noise in foreground segmentation.
We then extract SURF descriptors from the ROI falling
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Figure 3. Hand foreground segmentation

within the hand blob being tracked. We experimented with
various descriptors like SIFT, SURF, ORB etc. We finally
chose SURF descriptors for our system because they pro-
vide scale and rotation invariance, and are very efficient to
compute (Juan & Gwun, 2009). SURF descriptors are also
reasonably resistant to illumination changes, which make
them a good choice for our system.

Figure 4. SURF descriptors from different gestures

During training of our system, we build the visual vocabu-
lary by clustering the SURF descriptors from all the train-
ing frames into ’k’ visual words using k-means clustering
algorithm. Once we get our visual vocabulary, we quantize
the SURF descriptors for every input frame into these ’k’
bins to get the bag-of-words (BOW) features for that frame.

3.2. Supervised Model Training

We use a supervised learning model to train on the BOW
features data set from the training frames. (Caruana &
Niculescu-Mizil, 2005) provides an empirical comparison
of different supervised learning algorithms. For our clas-
sification problem, we considered four supervised learning
models, namely: support vector machines (SVM), neural
networks, decision trees, and random forest. We examined
three kernels for the SVM: radial basis function (RBF), lin-
ear and polynomial.

Each supervised learning model considered has multiple
parameters to optimize which are called hyper-parameters.
The SVM has the parameters: regularization constant C,
round-off error ε, gamma γ, and the degree of the polyno-
mial for polynomial kernels. The decision tree has the pa-
rameters: minimal number of data instances at a leaf node,
the pruning strategy, and the split strategy (best, random).

For the random forests, in addition to decision tree param-
eters, we have number of decision trees (n estimators). Fi-
nally, the neural network has the parameters: number of
hidden layers, number of hidden units, and the learning rate
α.

3.2.1. HYPER-PARAMETER OPTIMIZATION

It is not feasible to perform exhaustive search for the
best model and the best parameters. Instead we used
hyper-parameters optimization method which will search
the space of all possible models, model parameters, and any
data pre-processing technique to get the best performance
(PCA, normalization etc).

One of the effective hyper-parameters optimization algo-
rithms for function minimization is sequential model-based
optimization (SMBO), also known as Bayesian optimiza-
tion. SMBO is ideal for optimizing machine learning su-
pervised models that have many parameters. We used the
Hyperopt library (Bergstra & Cox, 2013) which provides
algorithms and parallelization infrastructure for perform-
ing hyper-parameters optimization.

We implemented an objective function which returns the
Hamming loss score of the prediction. Hyperopt mini-
mizes over this objective function to search the optimum
model selection, hyper-parameters, and pre-processing of
the data.

Since the goal is for each user to train the system for his
own selection of hand gestures, the system has to train on
different data sets for different users. Because we don’t
want to assume one configuration to be optimal for all data
sets we designed the system to search for best model and
best parameters for every training setting. We optimize the
hyper-parameters of each of the four learning models and
use the best fitting model with optimum parameters to es-
timate the initial weight vectors (θ) of the reinforcement
learning model.

3.3. Reinforcement Learning

Reinforcement learning is the idea that by taking an ac-
tion a system will receive a level of reinforcement either
positive or negative. In our system positive reinforcement
comes from the user when the model selects the correct
gesture and vice versa. Applying reinforcement learning to
a classification problem such as gesture recognition is not
intuitive. In the typical sense the reinforcement-learning
model contains set of states and a set of actions and a set
of rewards (Kaelbing & Moore, 1996). For our system, we
use the BOW feature vector of the input frame as state and
the system gesture label prediction as the action. Our re-
wards system is determined by whether or not the model
predicted the gesture correctly.
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Our initial approach was to try Q-learning algorithm. Af-
ter much research into the problem we discovered that Q-
learning in its pure form may not be suitable for the prob-
lem we are trying to solve. Q-learning looks for the action
with the most reward. However, it also looks forward one
state predicted by the next action to determine the great-
est reward at that next state. While this is great in theory
it doesn’t work for the problem we are attempting to solve
since our system is not purely autonomous; i.e. it depends
on the input gesture from the user. There are a few publica-
tions out there where Q-learning is used for classification
such as in (Wiering & Schomaker, 2011) where they treat
the pixels as the states and use a binning technique to deter-
mine the next action. However implementations like these
do not use the trained weight vectors from a supervised
learning model like SVM or Neural Network. Similarly,
(Lagoudakis & Parr, 2003) uses a variant of Q-learning and
approximate policy iteration based on rollouts for classifi-
cation problems. They use pure supervised learners like
SVM in the inner loop of policy iteration algorithm, for au-
tonomous tasks like pendulum balancing and bicycle rid-
ing. For our system, we decided to use the following vari-
ation of Q-learning algorithm for weight updates and Q-
value estimation.

Initially, the weight vectors trained by the supervised learn-
ing model are used to get Q-values Q(s, a) of each gesture
prediction (a) for every input BOW feature state (s).

Q(s, a) := θ1(a)x1(s) + θ2(a)x2(s) + ...+ θd(a)xd(s)

In the above equation θ(a) is the weight vector correspond-
ing to a gesture label ’a’, while x(s) is the BOW feature
vector for the input state ’s’. The Q-values for all the ges-
ture predictions are scaled between 0 and 1 using a squash-
ing function (for instance, logistic function) and the gesture
label with the highest Q-value is predicted by the system.
We use the difference between the highest Q-value and the
second-highest Q-value as a confidence score of the sys-
tem. If the confidence score is lower than a threshold, then
no gesture is predicted by the system.

During test time, the previous 10 predictions are presented
to the user on the side of his webcam feed. The user can
review and give positive/negative feedback on these side
frames using a mouse click (left-click for negative feedback
and right-click for positive feedback). The system uses the
below equation to update the weights θ(a) based on the
user feedback.

θi(a)← θi(a) + α(R−Q(s, a))xi(s)

In the above equation, α is the learning rate which ranges
between 0 and 1. R is the reward for positive and negative

feedback. We use a constant positive value R+ for posi-
tive feedback and a constant negative value R− for nega-
tive feedback. These updated weights are then used to find
Q-values for the next incoming frames.

Figure 5. Test Phase. System gesture label prediction is on the
top-left corner. The previous 10 predictions are shown as side
frames on the right for user feedback.

4. Results and Analysis
In this section, we show the performance of our system
with different parameter settings and learning models.

4.1. Data Used

We experimented with various online data sets for our sys-
tem. Since the goal is for personalization of user ges-
tures, we tried to closely imitate our use-case by gather-
ing data ourselves in real-world settings. This also enabled
us to validate the data frames on the number of descriptors
present and the number of convexity defects in the hand,
to avoid spurious data. We extracted the 300 valid frames
for each gesture in 3 different backgrounds and 3 different
lighting conditions, with 3 different users. We collected
two such data sets, one for 5 gestures and the other for
10 gestures. We divided the collected data set into train-
ing, cross-validation and test sets by the ratio of 60:20:20.
We use the training set for training the supervised learn-
ing models, cross-validation set for hyper-parameters op-
timization and test set for finally getting a measure of the
performance of our system. It should be noted that since
our training data sets are relatively small, the results may
differ for larger data sets.

4.2. Visual Vocabulary Size

First we explore the performance of our system with
change in the number of visual works ’k’, without opti-
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mizing for the hyper-parameters. We observe that as we
increase the vocabulary size, we get better accuracy on the
training data. We report the leave-one-out cross validation
scores for linear SVM kernel with variation in the number
of visual words in Figure 6.

Figure 6. Leave-one-out scores for different vocabulary sizes

While increasing the number of visual words boosts the
system training accuracy, it tends to overfit the training
data. We found that the test accuracy initially increases
with increase in visual vocabulary size, reaches a maximum
test score and then starts decreasing. For our application,
we found the optimum value of vocabulary size ’k’ to lie
between 150 and 300.

4.3. Supervised Model Optimization

4.3.1. HYPER-PARAMETERS ANALYSIS

Here we analyze the search space for choosing the best pa-
rameters using parts of the search space for each model.
Noting that since the user will train his own models, it is
possible that the best model parameters differ from the pre-
sented best model for other training settings.

The search space for hyperopt optimization for SVM with
RBF kernel is shown in Figure 7 as an example of the per-
formance of hyperopt. The figure shows the results from
5 gestures data set. Instead of an exhaustive search for the
best combination of C and gamma, the algorithm moves
in the log space with significantly less number of function
evaluations. The algorithm was able to find the area of in-
terest (the blue area with the lowest prediction error) in only
300 function evaluations for C ∈ [10−5, 105] and gamma
∈ [10−10, 10−4].

Figure 8 shows the accuracy of the Decision Tree model for
split strategies best and random, using different maximum
depth. Result is shown for 5 gestures and 10 gestures data
sets. Maximum depth greater than 15 produces comparable
prediction error. There is no overall best split strategy for
larger maximum depth according to Figure 8.
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Figure 7. Hyperopt search space for C and gamma parameters of
the RBF SVM. The color shows the error.
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Figure 8. Decision tree performance for split strategies: best and
random, with different maximum depth. Results is shown for 5
gestures and 10 gestures data sets.

Random forest accuracy improves by increasing number of
estimators to some extent where the improvement is limited
compared to the increased running time. Figure 9 shows
the prediction error for number of estimators 10, 20, 30
and 40. The effect of maximum depth of the trees within
the random forest has a small variable effect after depth of
20. Choosing a general optimal value for the depth is not
possible but a suggested range would be from 20 to 40.

4.3.2. BEST MODELS COMPARISON

We compare the prediction accuracy of the best models
chosen by hyperopt optimization for the two data sets: 5
gestures and 10 gestures. Table 1 shows the optimal param-
eter values achieved by the hyper-parameters optimization
algorithm. SVM and Neural networks performed slightly
better than decision tree and random forest as can be seen
in Figure 10.
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Table 1. Best chosen parameters for each model.

SVM DECISION TREE NEURAL NETWORKS RANDOM FOREST

NUMBER OF
GESTURES

KERNEL C DEGREE GAMMA SPLITTER MAX
DEPTH

ALPHA HIDDEN
LAYERS
SIZES

MAX
DEPTH

N
ESTIMATORS

5 POLY 0.72 4 51.80 BEST 26 0.14 25,27 20 22
10 POLY 0.02 4 6.25 BEST 17 1.67 28,24 13 10
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Random Forest (5 gesture data set)
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Figure 9. Random forest performance for different number of es-
timators. split strategies (best and random), and for different max-
imum depth. Result is shown for 5 gestures and 10 gestures data
sets.

Out of all the supervised models considered, the polyno-
mial kernel SVM proved to best fit our data sets (both for
5 gestures as well as 10 gestures). Figure 11 and Figure 12
show the confusion matrices for the two data sets with the
polynomial kernel SVM.
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Figure 10. Comparison of the best parameters for each model.
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Figure 11. Confusion matrix for 5 gestures data set.
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5. Discussion
While the results of our application are overwhelming pos-
itive there are several potential drawbacks of our system.
The first drawback is that since our system employs a user-
in-the-loop approach for hand segmentation, our system is
highly sensitive to initialization; i.e, a bad initialization for
the color profiling can result in spurious results. Since our
system essentially uses skin hue range for segmentation,
the system may not work too well if the background falls in
the same hue range as the user’s skin. To alleviate the effect
of segmentation noise on our system, we employ Kalman
filtering which can only reduce the spurious tracking to a
certain point. If the initialization and hand segmentation is
good, then our system performs well even in background
clutter since only the descriptors falling within the hand
blob are considered for bag-of-words features.

Another drawback of using the bag-of-words features is
that it doesn’t account for spatial layout. So the system
would not be able to tell the difference between two ges-
tures with similar bag-of-words features but different spa-
tial layouts. For instance, the system may not be able to tell
the difference between a gesture with the index and middle
finger up versus the middle finger and the ring finger.

Also, the system may not generalize well on individuals it
is not trained for, and the lighting conditions during test
time should ideally be similar to those used during train-
ing data collection. However, this drawback of generaliza-
tion to individuals and lighting conditions other than that
of training data can be overcome with the proposed rein-
forcement learning method during test time. With enough
feedbacks from the user, the system is able to converge for
any individual and lighting condition.

6. Conclusion
Hand gesture recognition is a very rich mode for human
computer interaction. Our system does a fairly good job of
recognizing distinct hand gestures of the user using a tradi-
tional webcam. This paper explains several techniques we
used for robust bag-of-words feature extraction, supervised
model training and hyper-parameter optimization, and re-
inforcement learning model used for improving our system
during test time. Unlike traditional gesture recognition sys-
tems that use only SVM or other supervised learning mod-
els, our system allows the user to give feedback to the rein-
forcement learning model, which over time does improve
the results of the system.

7. Future Scope
With the integration of depth sensors within new webcams,
one of the future scopes for our system would be to use

depth cues for hand segmentation which will eliminate the
need of user-in-the-loop approach for color profiling. Us-
ing depth cues for foreground segmentation would be more
robust to background clutter. We can also recover 3D struc-
ture of user’s hand with depth cues. This 3D geometry can
be used as additional features to the classifier and can serve
as spatial verification for our bag-of-words based predic-
tion.

Recognition of both-hand gestures can be another fairly
simple extension of our current system. For this, we
can track and extract bag-of-words features from both the
hands of the user to predict the gesture.

Since we are working with static gestures, there is a strong
temporal correlation between user gestures. To incorpo-
rate this correlation, we can use a hidden Markov model,
with the bag-of-words features as the observations and the
true gesture ID as the hidden state. The system can out-
put the predicted gesture ID based on the maximum likeli-
hood estimate.This can also be extended to recognize dy-
namic hand gestures where the temporal nature of the hand
movements are encoded within the trained hidden Markov
model.

Finally, our current system implements reinforcement
learning for weight updates only for linear SVM ker-
nel. However, in future, we can implement it for other
SVM kernels (especially for the additive chi-squared ker-
nel, since it works well for histogram features). We can also
implement reinforcement learning weight update for Neu-
ral Network using the backpropagation algorithm, which
can be a potential future scope for our system.
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