
Enhancing Matrix Factorization Based Recommender Systems Using
Co-purchase Networks

Walid Chaabene WALIDCH@VT.EDU

Virginia Tech
Blacksburg, VA 24061

Sirui Yao YSIRUI@VT.EDU

Virginia Tech
Blacksburg, VA 24061

Abstract

As E-commerce became increasingly popular in
the latest decade, customers nowadays are over-
whelmed by choices. Therefore, as tools that
can provide suggestions to users according to
their requirement, recommendation services have
become a salient part of E-commerce websites.
Presently, one of the most popular and most re-
searched techniques of the recommendation sys-
tems is collaborative filtering. Algorithms like
Matrix Factorization has been proved to be effec-
tive. However, this algorithm, like most collabo-
rative filtering algorithms, is constantly hindered
by two major drawbacks. On one hand, it faces
the so called cold start problem as it fails when no
usage data is available. And on the other hand,
data sparsity limits its predictive performance.
To work around these issues, we propose a hy-
brid model where we use co-purchase networks
as a secondary source of information to increase
the accuracy of the matrix factorization method.
Such networks represent products as nodes and
edges as a mean to capture a high likelihood of
items being purchased together. This new ap-
proach is tested on Amazon and proved to outper-
form the classical matrix factorization approach.

Introduction
The sheer amount of information and data generated by
users behavior on the internet has proliferated exponen-
tially over the past few years, leading to an information

Virginia Tech CSx824/ECEx424 final project report. Copyright
2016 by the author(s).

overload. Successful online services have exploited this
valuable data to create insights and uncover relevant pat-
terns to adapt and personalize their services.
Companies like Netflix, Pandora and Amazon owe a part of
their success and popularity to their efficient recommender
systems (RS) (Langley, 2011). Recommender systems of-
fer a high added value to online services. Their goal is
to provide suggestions to users according to their profile.
They learn hidden patterns of users behaviors and rela-
tions between offered items to help individuals identify the
content of interest from a potentially overwhelming set of
choices. The main issue is to scrape through the huge pile
of data to mine what the user is actually looking for.
As this remains an open challenge for data science re-
search, many approaches to design efficient recommender
systems have been introduced in the recent years. One of
the most popular and cost effective approach is matrix fac-
torization (Koren et al., 2009). The main idea of this ap-
proach is to model ratings as dot products between user
vectors and item vectors in a common latent space. The
approach rely on existing data to learn those vectors and
then uses them to predict missing ratings.
One of the major drawbacks of this approach is that it does
not rely on any source of information other than exist-
ing ratings. This limits the predictive performance of the
method as it can lead to over-fitting in highly sparse matri-
ces.
We propose an modified version of matrix factorization
where we exploit information from item co-purchase net-
works to reduce the effect of sparsity.
In the first section of this paper we present the different
types of recommender systems. The matrix factorization
method is presented in the second section. T

CS5824/ECE5424 final project report

1. Methods for building recommender
systems

In this section we present the different types of recom-
mender systems. We focus on three popular categories:
Content-Base Filtering, Collaborative Filtering and Hybrid
Recommendation Approaches (Thorat et al., 2015).

1.1. Content based filtering

Content-based recommender systems work with profiles of
users that are created at the beginning. This kind of sys-
tems use information from user profiles and tastes. When
creating a profile, recommender systems make a survey, to
get initial information about a user in order to avoid the
cold start problem. Based on the item that a given user
rated positively, the system recommends the mostly similar
to the user.

1.2. Collaborative filtering

Collaborative filtering is one of the most researched tech-
niques of recommender systems. Such systems tend to
cluster users in communities, where each community share
almost the same taste. A user gets recommendations to
items that have been positively rated by users in his neigh-
borhood.

1.3. Hybrid methods

These techniques combine different techniques of collab-
orative approaches and content based approaches. It has
been proven that using hybrid approaches can help avoid
avoid some limitations and problems like the cold-start
problems.

2. Matrix factorization techniques for
recommender systems

Matrix factorization is a collaborative filtering method that
became popular after the team that proposed it won the
Netflix Prize competition in 2009. The key idea of this
approach is to model ratings as dot products between user
vectors and item vectors in a common latent space. The ap-
proach rely on existing data to learn those vectors and then
uses them to predict missing ratings. Authors of (Koren
et al., 2009) refer to two learning approaches. The first is
the stochastic gradient descent which consist in minimiz-
ing the prediction’s squared error over a large number of
iterations. At each iteration one existing rating is randomly
picked and used to update the corresponding user and item
latent vectors. The second is alternating least squares. This
is a stochastic approach as well where we pick one random
rating and update the corresponding item and user vectors.
The only difference is that for each iteration, we fix one

vector and perform least square optimization on the other
before rotating both vectors and repeating the same proce-
dure.
Authors also present various ways of improving the ba-
sic model, such as adding biases, incorporating additional
input sources, considering temporal dynamics and treat-
ing inputs with varying confidence levels. Although, these
some of these improvement come at a considerable cost on
both the infrastructure and the computation levels.

2.1. Basic form

We are given a rating matrix R that contains existing rat-
ings of items by users. R is often highly sparse, where
missing ratings are coded as 0. Matrix factorization mod-
els map both users and items to a joint latent factor space
of dimensionality f , such that ratings are modeled as inner
products in that space. Accordingly, each item i is asso-
ciated with a vector qi, and each user u is associated with
a vector pu. rui, the rating that user u gives to item i, is
modeled as follows,

r̂ui = qT p (1)

For a given item i, the elements of qi are hidden attributes
that are not physically interpretable, however they are cre-
ated in the as a result of item-user interactions. For a given
user u, the elements of pu measure the extent of interest the
user has in items that are high on the corresponding hidden
attributes (Koren et al., 2009). The major challenge is com-
puting the mapping of each item and user to factor vectors
q, p. After the recommender system completes this map-
ping, it can easily estimate the rating a user will give to any
item by calculating the inner product

2.2. Biases

Considering the difference between different users or dif-
ferent items, it would be insufficient to explain the full rat-
ing value only by an interaction of the form qT p. Instead,
we try to identify the portion of these values that individual
user or item biases can explain. Different users have differ-
ent rating criteria, some of them tend to give higher ratings
while some others tend to give lower. Some good products
tend to get higher ratings while others get lower. So we use
a bias term to capture this overall deviation of rating from
the average.

r̂ui = pTu qi + bui (2)
bui = µ+ bu + bi (3)

The overall average rating is denoted by µ; the parameters
bu and bi indicate the observed deviations of user u and
item i, respectively, from the average.

Correspondingly, we change the objective function and add

CS5824/ECE5424 final project report

a regularization quantity that is tuned by λ to control the
complexity of the desired model.

F =
∑

(u,i)∈S

(rui − (bui + pTu qi))
2 + λ(||pu||2 + ||qi||2)

(4)

2.3. Confidence

For a given rating ‘Votes’ represent the number of users
involved in the voting and ‘Helpful’ represents the number
of people who voted helpful. Thus the number of ’helpful’
is always less than or equal to the number of votes. We use
this information to calculate the confidence in each rating.
To account for ratings with no votes, we apply smoothing
as follows.

cui =
#helpful(rui) + α

#votes(rui) + 2α
(5)

Where α is a smoothing parameter.

Using the confidence matrix C, we correspondingly mod-
ify the objective function by adding cui for each given rui,
so that we give more credit to the ratings that have higher
confidence.

F =
∑

(u,i)∈S

cui(rui − (bui + pTu qi))
2 + λ(||pu||2 + ||qi||2)

(6)

3. Co-purchase networks
E-commerce companies, such as Amazon, keep track of
their daily sales. One interesting insight to capture in such
data is the list of items that are frequently purchased to-
gether by users.

3.1. Building a co-purchase network

Using this data a co-purchase network captured by an ad-
jacency matrix A can be created.This network is an undi-
rected graph that represents items as nodes. Edges capture
the fact that items are frequently purchased together, i.e. if
item i is linked to item j in the network then i and j are
frequently purchased together. Thus the inputs of A are as
follows,

aij =

{
1 if i, j are frequently purchased together
0 otherwise

(7)

3.2. Mining the co-purchase network

Based on the data available in the co-purchase network we
would like to infer the probability that a random user u
would rate items i and j the same way. We assume that
this probability depends on how close or equivalently, how
well connected, i and j are to each other in the network. To
this end we define a connectivity matrix M as described in
(Michele Benzi, 2013):

M = exp(A) =

∞∑
k=0

Ak

k!
(8)

Where Mi,j describes how well i and j are connected to
each other.
The entry (i, j) in each Ak

k! is the number of walks between
i and j of length k penalized by the 1

k! . This means that
mij is the number of all possible walks between those two
nodes were longer walks are penalized by a greater quan-
tity.
M is row-wise normalized in order to transform it into a
stochastic matrix where mi,j indicates the probability that
a random user u would give the same rating to i and j.

4. Optimizaion problem
Using the information obtained from the co-purchase net-
work, we can turn the objective function into:

F =
∑

u,i:ru,i 6=0

[
cui(rui − bui − qTi pu)2

+
∑

u,j:ru,j=0

[
mijcui(Rui − buj − qTj pu)2 + λ||qj ||2

]
+ λ(||qi||2 + ||pu||2)

]
(9)

The computational complexity of the learning algorithm
becomes the critical limiting factor when we are dealing
with very large datasets. With its small memory footprint,
robustness against noise, and rapid learning rates, Stochas-
tic Gradient Descent (SGD) has proved to be well suited to
data-intensive machine learning tasks (Bottou, 2011).

Similar to Batch Gradient Descent, the basic idea of
Stochastic Gradient Descent is also to compute the gra-
dient of the objective function and update the optimized
parameters using a proportional quantity to the opposite
direction of the gradient at each iteration until reaching a
local minimum point. Instead of using all the dataset to
perform every update SGD selects a random subset and

CS5824/ECE5424 final project report

Algorithm 1 Solving the optimization problem
Input: Set the gradient step γ
repeat

Pick (u, i, j) s.t. rui 6= 0 and ruj = 0
Compute∇qiF ,∇qjF and ∇puF (eq. 10)
Update qi, qj and pu (eq. 11)

until convergence

computes an empirical gradient of the objective function.
This strategy hugely accelerates the learning process. With
enough iterations, SGD approximate the optimal solution
accurately and yields a reliable output in a much faster
than Batch Gradient Descent.

In our case we select a random triplet (u, i, j) at
each iteration such that rui 6= 0 and ruj = 0.

The stochastic gradient update is performed as follows:

∇qiF = −cui(rui − bui − qTi Pu)Pu + λqi

∇pu
F = −cui(rui − bui − qTi Pu)qi

−mijcui(rui − buj − qTj Pu)qj + λpu

∇qjF = −mijcui(rui − buj − qTj Pu)pu + λqj

(10)

Each latent vector is updated as follows:

qi = qi − γ∇qiF

pu = pu − γ∇pu
F

qj = qj − γ∇qjF

(11)

Where γ is the gradient step. Algorithm 1 summarizes the
steps of the optimization problem.

5. Experiments
We tested the classical matrix factorization method on a
publicly available Amazon data. Amazon bases its recom-
mendation system on item to item collaboration filtering
(Linden et al., 2003). Matrix factorization is more popu-
lar in streaming services like WebTV and WebRadios. We
would like to see how our approach performs on the Ama-
zon data. Fist we tested the method’s ability to recover ex-
isting ratings. After validating that, we tested the method’s
ability at predicting missing ratings. Finally we tested the
proposed method and compared it to the classical one.

5.1. Data Collection and pre-processing

5.1.1. DATA DESCRIPTION

The Amazon dataset was downloaded from the
Stanfor Networ Analysis Project (SNAP) at

(http://snap.stanford.edu/).
The dataset file is structured as follows:

• Id: Product id

• ASIN: Amazon Standard Identification Number title:
Name/title of the product

• Group: Product group (Book, DVD, Video or Music)

• sales rank: Amazon Sales rank

• similar: ASINs of co-purchased products (people who
buy X also buy Y)

• categories: Location in product category hierarchy to
which the product belongs (separated by category id)

• reviews: Product review information: time, user id,
rating, total number of votes on the review, total num-
ber of helpfulness votes (how many people found the
review to be helpful)

5.1.2. CONSTRUCTING THE RATING AND CONFIDENCE
MATRICES

Numerical IDs were created for both items and users. We
kept mapping vectors to keep track of the original IDs.

To build the matrices we first generated a five-column list
L containing Product Id, Customer Id, Rating, Number of
votes and Number of ’Helpful’ endorsements. Every col-
umn has the same length. Using the first two columns of
L as indices and the third one as inputs, a sparse matrix R
was created. We create confidence coefficients as shown in
section 3.3. Similar to to R we use the first two columns of
L as indices and use the computed confidence coeficients
as inputs to for C.

The original R has a dimension of 1555170× 402724, and
contains 7593244 rating records. It has a density of:

density =
7593244

1555170× 402724
= 0.00001212 (12)

Running the method on such a large and highly sparse rat-
ing matrix will take a long time. Therefore, we select the
most popular products and most active users.

6. Testing the classical matrix factorization
method

We test the classical approach on a small subset of the rat-
ing matrix R containing 155 users and 2552 items.

CS5824/ECE5424 final project report

6.1. Testing ratings reconstruction

We are first interested in seeing how well can this method
recover existing ratings. To do so we define the bias error.
We define I = {(u, i) : rui 6= 0}.

BiasError =
1

|I|
∑

(i,j)∈I

(rij − r̂ij)2 (13)

Figure 1. Experiment Results (No induced sparsity)

Figure 2 shows that the error decays to zero with the gra-
dient iterations. At the end of the optimization problem we
obtain:

BiasError = 0

This means that the classical method is able to recover ex-
istent ratings.

6.2. Testing ratings prediction

To test the method’s predictive abilities, we first pick a ran-
dom subset S of I . We then create a new matrix R̃ such
that:

R̃ui =

{
Rui (u, i) 6∈ S
0 otherwise

(14)

This means that we induced further sparsity in R and as-
sume that we are missing some existing ratings. We train
our model using R̃. Using the resulting R̂, we define the
prediction error as:

PredictionError =
1

|S|
∑

(i,j)∈S

(rij − r̂ij)2 (15)

Figure 2. Experiment Results (Induced sparsity)

Figure 2 shows that the error decays to zero with gradient
iterations. At the end of the optimization step we obtain:

PredictionError = 0

Hence the method has perfect predictive abilities on this
small test dataset.

7. Testing the proposed method
Figure 3 shows the error trend versus the gradient itera-
tions. We see that the error is decreasing. For this experi-
ment we used a large rating matrixR capturing 12081 users
and 46655 items. The use of the stochastic gradient ap-
proach was handy since the time complexity from an itera-
tion to another remains the same. However we need to run
the optimization program for a high number of iterations.

Figure 3. Experiment Results (proposed method)

CS5824/ECE5424 final project report

The results obtained are satisfactory in the sense that the in-
corporated information from the network is not introducing
noise but actual useful patterns. This conclusion is backed
by the decaying trend of the error from an iteration to an-
other.

Conclusion
In this work we proposed a modified version of matrix
factorization where we incorporated information from Co-
purchase networks. The method is based on inferring a
probability that computes the likelihood of two items get-
ting the same rating from a random user. We proposed
a modified objective function and stochastic gradient de-
scend method to optimize. As shown in our result the clas-
sical version of matrix factorization is a robust and fast
method. However we believe that the proposed method
will have better performance since it incorporates the use
of a rich source of information that is captured using co-
purchases networks. More data can be captured in the co-
purchase network as nodes contain rich local attributes that
can be exploited to infer more accurate similarity probabil-
ities in the future.

References
Bottou, Lon. Large-scale machine learning with stochastic

gradient descent. Computer, 2011.

Koren, Yehuda, Bell, Robert, and Volinsky, Chris. Ma-
trix factorization techniques for recommender systems.
Computer, 2009.

Langley, P. Recommender systems handbook. In
Francesco Ricci, Lior Rokach, Bracha Shapira Paul
B. Kantor (ed.), Springer, pp. 1–29, 2011.

Linden, Greg, Smith, Brent, and York, Jeremy. Amazon.
com recommendations: Item-to-item collaborative filter-
ing. Internet Computing, IEEE, 7(1):76–80, 2003.

Michele Benzi, Christine Klymk. Total communicability as
a centrality measure. In Journal of Complex Networks,
2013.

Thorat, Poonam B, Goudar, RM, and Barve, Sunita. Survey
on collaborative filtering, content-based filtering and hy-
brid recommendation system. International Journal of
Computer Applications, 110(4), 2015.

