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Abstract
Supervised learning tasks can require a large col-
lection of labeled data for accurate pattern recog-
nition. For recognition of handwritten charac-
ters, manually producing ground truths can be
very tedious. In this paper, we propose a semi-
supervised hierarchical clustering method to re-
duce the necessary amount of human effort re-
quired for labeling a dataset of handwritten char-
acters. The experimental results demonstrate that
the approach can improve labeling accuracy over
baseline methods.

1. Introduction
Collecting and labeling datasets consumes substantial re-
sources in the application of machine learning techniques,
due to wide success of supervised learning approaches.
These techniques are often attractive as they allow control
over the resulting output independent of input data; images
of handwritten characters can be fed to a machine learning
algorithm to classify them based on the the labels of simi-
lar character images already seen. These labels may corre-
spond to the identification of the alphabet or digit from the
image, the identification of where they originated, or the
quality of the handwriting samples, etc. Assigning labels
of potential interest grows more than linear in the amount
of collected data. This is compounded by the explosion of
data available for labeling; the internet has provided expo-
nentially growing sources of images, video, and text—all
of which can provide useful information ripe for machine
learning. Automating the process of labeling data reduces
the ability to specify the desired output, but partial automa-
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tion can minimize human effort while maintaining control.

In this paper, we propose a semi-supervised learning tech-
nique for labeling large datasets of handwritten characters
or digits. Our approach aims to discover clusters from one
feature set where the labeling propagated to all members is
in conflict with the labels proposed by other feature sets for
the same data points, and splitting those clusters into sub-
clusters to get more uniform clusters for voting. This ap-
proach leverages the human provided information to auto-
matically identify inconsistencies between the feature sets,
which ideally leads to a system which can start with low
initial human involvement, and automatically request addi-
tional involvement as the data indicates confusion in label-
ing.

The overall proposed algorithm works as follows: for a set
of training input examples, multiple feature representations
of the inputs are extracted. These representations are clus-
tered independently using k-means to produce a classifica-
tion of inputs which appear similar. The centroids of each
cluster are presented to a human expert to provide ground
truth labelings for each cluster. The label for each clus-
ter centroid is considered as a vote for the true label for
all members of that cluster, resulting in every data point
having one vote for the assigned label for each feature rep-
resentation used, which can be used in a voting scheme to
assign labels to every example. The primary novel contri-
bution of this paper is to introduce an iterative hierarchical
re-clustering step, in which every cluster is measured for
how well the centroid label matches the votes for mem-
ber points from other feature representations, with clusters
with high conflict (e.g. votes from other representations do
not agree with the label of the cluster under consideration)
are subdivided into sub-clusters, with the new clusters an-
notated by the human expert. The technical details of the
steps described are presented in the following sections of
the paper, with experiments demonstrating the overall per-
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formance of the implemented approach.

Experiments included in this paper are based on results us-
ing the MNIST image database of handwritten characters
from multiple authors (LeCun et al., 1998). This dataset
contains a collection of 60,000 training images and 10,000
test images. Images are anti-aliased grayscale and are cen-
tered within a 28x28 pixel square.

2. Related Work
Several approaches to a semi-supervised method of au-
tomating data labeling exists in the literature.

(Vajda et al., 2011) presents an approach using an unsuper-
vised clustering algorithm to group similar subsets of data.
Using raw pixels, Principle Component Analysis (PCA),
and auto-encoder as features, the unsupervised clustering
provides cluster centroids for a human expert to label. Fol-
lowing this step, a voting scheme is used to decide the final
label for samples with unanimous agreement.

(Vajda et al., 2015) uses a similar approach while adding
additional image features and clustering methods. Local
Binary Patterns (LBP) and Radon transform are among the
features added to this approach. Additional clustering tech-
niques are used such as Self-Organizing Map (SOM) and
Growing Neural Gas (GNG) to compare performance in
labeling and cluster compactness accuracies.

(Li et al., 2012) introduces an agglomerative hierarchical
clustering approach for recognition of online handwritten
digits. One or more strokes per symbol are used to generate
a codebook mapping which is later used for labeling raw
handwritten digits.

Experiments indicate that parallel clusterings improve label
accuracy when the cluster labels are unanimous, but per-
formance suffers even under majority voting (Vajda et al.,
2015). Increasing the number of clusters improves perfor-
mance by generating more compact clusters, thus reducing
the number of points for which conflicts occur—at the cost
of requiring additional human labeling. Our approach at-
tempts to minimize conflicted cluster labeling by introduc-
ing a hierarchical clustering method.

3. Image Features
Voting requires multiple parallel representations of the in-
put image, so the core label propagation technique can be
repeated in parallel on differing approaches. Features must
vary in representing the original data in order to provide
variety in votes, implying a need for complementarity be-
tween features. Multiple image features are implemented
to attempt to provide variety - several of these are used
based on previous experiments (Vajda et al., 2015). This

experiment used five feature representations: raw data, an
auto-encoder, Local Binary Profiles, the Radon Transform,
and Profiles. The last proposed feature, Profiles, performed
very poorly in previous experiments (∼76% accuracy vs.
∼96% accuracy for other features), and did not provide
much information on implementation details, which led to
dropping this feature from future consideration. In order
to increase the number of feature sets for voting, two addi-
tional representations known to perform well in many com-
puter vision tasks were implemented - the Histogram of
Oriented Gradients (HOG), and the GIST descriptor. This
results in six features being implemented and used for clus-
tering: Raw Data, Auto-Encoder, Local Binary Patterns,
Radon Transform, HOG, and GIST.

3.1. Raw Data

The simplest representation of data to consider is the origi-
nal data itself. Raw data has been used successfully in pre-
vious work, and is included here as well. The only trans-
formations performed on the input data is to reshape the
2D image into a 1D feature vector (producing a 784 di-
mensional vector), and normalizing the raw pixel values to
the [0.0, 1.0] range.

3.2. Auto-Encoder

An auto-encoder (AE) is an early proposed deep learn-
ing method for performing dimensionality reduction, used
as a data-driven approach to learning features (Hinton &
Salakhutdinov, 2006). Creating an auto-encoder starts with
training a neural network with the input layer and output
layer have an equal number of nodes, and the hidden layer
having fewer nodes. The training dataset is constructed
with the inputs and labels both set to the raw data described
previously, and with trainining performed with any neural
network techniques desired. This results in a neural net-
work learning some representation to reconstruct the origi-
nal dataset. The hidden layer, having fewer nodes than the
input, encodes the data in some lower dimensional feature
space (e.g. encoding.) Dimensionality reduction comes
from recording the hidden layer activations, as opposed to
the final results of the output layer, which acts as the de-
coding step.

For these experiments, the auto-encoder uses 200 nodes in
the hidden layer for dimensionality reduction, to match the
reported configuration in (Vajda et al., 2015). The original
experiments do not report the implementation details for
the auto-encoder trained, limiting the ability to perfectly
implement the original approach. The auto-encoder imple-
mented here uses the tanh activation function for the hid-
den layer, and is trained over the entire training dataset us-
ing iRPROP algorithm (Igel & Hüsken, 2000) for updating
weights during back-propagation.
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3.3. Local Binary Patterns

Local Binary Patterns (LBP) encode local texture through
binary comparisons of pixels and their immediate neigh-
bors, and is part of the original experiments useful features
(Ojala et al., 1994). This feature provides a rotation invari-
ant representation of each image, and performed well in
previous experiments performing the same task.

3.4. Radon Transform

The Radon transform simulates performing tomography
over a 2D image (Radon, 1986). This means rotating the
image through some number of orientations, computing
line integrals through parallel lines in each configuration.
These integrals represent the density of the image along
different paths through the image. The radon transform
is computed by rotation the image in 1◦ increments over
[0◦, 180◦].

3.5. Histogram of Oriented Gradients

Histogram of Oriented Gradients compute gradients in re-
gions of the image, building histograms of how often gra-
dients are oriented along certain directions in the image.
Given that HOG measures the distribution of gradients in
regions of an image, this can represent general shape in a
compact and intuitive fashion, which has been shown to
perform well in many classification tasks (Dalal & Triggs,
2005). For this experiment, HOG is configured to subdi-
vide the image into four quadrants for computing gradi-
ents, with gradients divided into eight directions. These
values were empirically determined to produce good clus-
tering performance.

3.6. GIST Descriptor

The GIST descriptor computes a single feature to describe
an entire image based on spectral frequencies transforms.
This feature has been shown to perform very well in dis-
criminating between images with different global proper-
ties, such as discriminating between natural and man-made
scenes (Oliva & Torralba, 2001).

4. Clustering
To minimize the amount of human intervention, the data
must be organized in some unsupervised manner in a fash-
ion to allow any human annotation to apply to as many
points as possible. In the limit, this intuition leads to the
observation that the ideal approach would automatically
group the dataset by labels, asking the human operator only
to provide the desired token to represent each group. The
more achievable solution for this approach is to use unsu-
pervised clustering techniques to develop some segmenta-

tion of the data in which clusters are pure (e.g. all members
of any individual cluster all belong to the same ground truth
label.) To account for intra-class variation and improve the
chances of clusters remaining pure, the initial clustering
should over-segment the data, allowing multiple clusters to
map to the same ground truth label.

Previous works compared several different clustering algo-
rithms applied to the same problem and dataset. Through-
out the comparisons performed, k-means consistently out-
performed the other techniques presented (namely Self Or-
ganizing Maps and Growing Neural Gas.) In this work,
k-means was used to perform clustering on each feature set
computed for the data.

4.1. k-Means Clustering

k-means approach places k centroids over data forming k
clusters of data points. In our project we applied k-means
clustering on each feature set separately. These experi-
ments use the Euclidean distance metric for all clustering
operations.

5. Hierarchical Clustering and Voting
To address the impact of conflicting clusters on accuracy,
we propose a hierarchical clustering approach: to selec-
tively introduce additional clusters only in subsets of the
data in which conflicts from coarser labels appear.

After clustering data points based on features, a label is as-
signed to the cluster centroids by a human expert. The label
of the centroid is circulated to each of the data points in the
corresponding cluster. Thus, each datapoint will inherit la-
bels from each feature.

Following this step, a final label is assigned to a data point
by calculating votes based on the labels inherited from indi-
vidual features. If there exists k features andm labels, then
a data point will inherit total k number of labels from k fea-
tures. If a data point inherits jth label (where j ∈ [1,m])
from bm2 c + 1 number of features, the jth label wins ma-
jority votes for the data point from k set of features.

Naturally, not every data point considered will have labels
with majority votes. The fitness of clusters is calculated
based on a metric to determine how many data points from
a cluster are not assigned labels with majority votes. Us-
ing the metric, we can decide which clusters are needed to
be further subdivided into additional clusters and perform
reclustering for a specific feature. This reclustering tech-
nique will replace a cluster centroid with additional cluster
centroids.

Similar to the original clustering, the new cluster centroids
are labeled by a human expert and continue the process of
circulating centroid labels to the data points of the corre-
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sponding cluster in order to select a new set of clusters for
subdivision. After running the whole process for several
iterations, we learn a set of clusters with labeled centroids.

5.1. Metrics For Calculating Cluster Fitness

In order to decide which clusters to consider for recluster-
ing, three metrics were devised to measure the fitness of
clusters.

5.1.1. METRIC 1

The reclustering aimed to improve the purity of initial
clusters formed. Thus we measured cluster entropy as the
metric of cluster quality. A pure cluster would have all
data points with single label and the impure will have a
random mix. In my metric to choose the victim cluster to
disintegrate, I look for cluster which is confused bewteen
smaller set of labels. Rather tha having an equal mix of all
possible labeled data, it has near equal mix of smaller set
of lables.

The algorithm iterates through each cluster per fea-
ture set. Each data points within the cluster are looked up
into all the remaining feature sets to find their unique labels
sets. We measure the probability of each such unique label
within the feature set which measure the confidence of this
feature about the data points being that labels.

Individual feature set label predictions may have some
common intersection. Meaning there might be cases where
say feature set gist and feature set hog predict a common
label say 3 along with other labels. If this is different from
the evaluating cluster predicted label then we think that
the cluster is contradicted by other feature set for label
prediction.
The metric calculation algorithm is described below:

1: for f = 1 to F do
2: for i = 1 to K do
3: Find unique labels of data points in cluster[i] in

Feature Set 6= f
4: Find probability of individual Labels within the

Feature Set 6= f
5: Find the number of times same labels predicted

by Feature Set 6= f. Call it freq
6: cluster[i].entropy = freq * [sum of probablity for

each predicted Labels different from cluster pre-
diction]

7: end for
8: end for
9: return cluster.entropy

Where F are total number of features and K are total

number of clusters.

The victim cluster is chosen the one with highest en-
tropy value. k-means clustering is applied on this to form
two cluster out of it. The whole process is reapeated for
fixed iteration, we chose it to be 10.

5.1.2. METRIC 2

If the number of data points with conflicting labels (not
having any candidate label with majority votes) from clus-
ter Ci is ni, the total number of data points in cluster Ci

is Ni, value of metric 1 for the cluster Ci is Mi and to-
tal number of clusters for candidate feature is j, where
i ∈ {1, 2, · · · j}. Mi is calculated as followed:

Mi =
ni
Ni

(1)

This metric for calculating cluster fitness exposes clusters
having higher density of conflicting data points. But this
metric fails to penalize the clusters with lower density of
conflicting data points, but still the number of total con-
flicting data points remains high.

5.1.3. METRIC 3

If the number of data points with conflicting labels (not
having any candidate label with majority votes) from clus-
ter Ci is ni, the average number of data points in a cluster
is Navg , value of metric 2 for the cluster Ci is Mi and to-
tal number of clusters for the candidate feature is j, where
i ∈ {1, 2, · · · j}. Mi is calculated as followed:

Mi =
ni
Navg

(2)

This metric always penalizes the clusters with relatively
higher number of conflicting data points.

6. Results
6.1. Clustering Performance

Clustering forms the basis of these approaches, and using
the clustering of a single feature set can be considered the
baseline for comparison. The first metric to consider is how
compactly a clustering represents the original data, measur-
ing how much variance exists within clusters and between
clusters, as presented in (He et al., 2004). Variance of some
set of points X is mesaured using standard deviation:

σ(X) =

√√√√ 1

N

N∑
i=1

(xi − x̄)2 (3)
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Feature # Dimensions k=50 k=150
Raw 784 0.7816 0.7286
AE 200 0.7315 0.6718
LBP 784 0.8018 0.7616
Radon 7200 0.6568 0.5969
HOG 32 0.6090 0.5471
GIST 960 0.6510 0.5920

Table 1. Compactness metric for training data of each feature set
with k-means clustering.

In order to normalize this against the variation inherent in
the dataset, the standard deviation for an individual cluster
should be normalized by the standard deviation of the entire
dataset. In addition, the compactness of a clustering needs
to be considered over every cluster in a clustering. Thus,
for K clusters dividing a dataset X into X = C1 ∪ C2 ∪
. . . CK , compactness can be computed by:

Compactness =
1

K

K∑
i=1

σCi

σX
(4)

The compactness of each feature set is reported in Table 1
for k-means clustering over the training dataset, providing
a measure of how well the clusters are capturing the vari-
ance of the original dataset.

The second metric computed for individual clusterings
measures the accuracy of labeling the dataset using label
propagation. The entire dataset is labeled by having ground
truth labels provided for the centroid of each cluster, and
assigning the centroid label to every datapoint contained
within that cluster. Accuracy is computed as a percent-
age of correct classifications over the entire dataset, and
are computed over both the training and test datasets for
comparison.

Figure 1. Accuracy of labels from considering only single feature
sets.

Experiment k # Annotations Acctrain Acctest
Voting 150 900 93.30 93.85
Metric 2 150 2896 94.37 94.60
Metric 3 150 1802 94.74 95.47
Voting 50 300 88.14 88.11
Metric 2 50 3542 91.30 93.82
Metric 3 50 1726 92.72 93.94

Table 2. Accuracy of label assignments in various vot-
ing/reclustering configurations.

6.2. Reclustering Results

In order to test the improvement in labeling performance,
the accuracy of labeling using voting between multiple fea-
tures, as well as voting after reclustering with alternate met-
rics were computed. For each trial, the number of human
annotations is also reported in order to provide insight into
the relative return on investment for different reclustering
algorithms.

7. Conclusions
The new features introduced compare favorably to previous
implemented features, both in clustering compactness and
raw label propagation. These features provide information
which provides strong discriminative information under
unsupervised clustering, crucial for reducing the amount of
labeling required. The experiments demonstrate that sev-
eral different metrics for build the hierarchical clustering,
which improve performance results of label propagation.
Voting alone shows no significant difference compared to
the best single clustering approach in either the train or
test dataset. With reclustering, accuracy of labels improves
over single clustering or voting baselines in all datasets,
with the third metric producing the best results overall. The
improvements are modest, given the increase in the number
of human annotations required; the best single clustering
requires 150 annotations for 93.64% accuracy on the test
dataset, while the best reclustering approach requires 1802
annotations to increase that accuracy to 95.47%.

When considering the number of clusters to request human
annotation, fewer clusters result in a more automated sys-
tem. However, fewer clusters result in less accurate label-
ings across the dataset, resulting in a tradeoff between hu-
man effort and accuracy. Experiments tested re-clustering
with two different initial clustering values, to represent
lower and higher amounts of initial human involvement
in the labeling. For the highest performing metric, the
number of human annotations ends up at roughly the same
levels (1726 annotations when k = 50, 1802 annotations
when k = 150) while better performance with more initial
clusters. The current re-clustering approach subdivides all
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clusters where the metric exceeds a fixed threshold, which
leads to similar numbers of subdivisions. In this situation,
a higher initial number of clusters allows clusters to start
with fewer points per cluster on average, resulting in fewer
clusters that are inconsistent.

Future work for this approach would focus on further refin-
ing the reclustering metrics to improve accuracy while min-
imizing the number of additional annotations. One particu-
lar approach which had been considered late in the project
involved developing a metric based on the conditional en-
tropy of labels for examples in a single cluster given the
label distributions from other feature sets. This would pro-
vide a metric more rigorously founded, and can exploit
the information present in human annotations (where the
ground truth label is known with 100% certainty) as op-
posed to label propagations. This approach requires re-
working much of the clustering approach to provide prob-
ability distributions for labels given a single feature set,
which ran into time constraints for the project.
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