
Machine Learning Fall 2015 Homework 5

Make sure to explain you reasoning or show your derivations. Except for answers that are especially
straightforward, you will lose points for unjustified answers, even if they are correct.

General Instructions

Submit your homework electronically on Canvas. We recommend using LaTeX, especially for the written
problems. But you are welcome to use anything as long as it is neat and readable.

Include a README file that describes all other included files. Indicate which files you modified. You are
welcome to create additional functions, files, or scripts, and you are also welcome to modify the included
interfaces for existing functions if you prefer a different organization.

Since we will work on some of the homework in class, clearly indicate which parts of your submitted
homework are work done in class and which are your own work.

Relatedly, cite all outside sources of information and ideas. List any students you discussed the home-
work with.

Written Problems

1. Consider a hidden Markov model (HMM) with Gaussian emission probabilities. This type of
HMM represents the joint distribution of a sequence of real valued observations Y = {y1, . . . , yT },
where each observation is a real-valued vector yt ∈ Rd, and a sequence of hidden, latent states
X = {x1, . . . , xT }, where each latent state is a multinomial value xt ∈ {1, . . . ,K}. Using a tempo-
ral interpretation of the sequence, the HMM’s power comes from the assumption that the past is
independent of the future given the present.

(a) (2 point) Write the factorized probability distribution for the HMM in terms of (1) the prior state
probability p(xt), (2) the transition probabilities p(xt|xt−1), and (3) the observation probabilities
p(yt|xt).

(b) (2 points) Using the factorized form, write the formula for computing the joint probability of the
first observation and the first latent state p(x1, y1). In other words, show how marginalizing out
all the variables except x1 and y1 leads to a simple formula.

(c) (3 points) Letting α1(xi) := p(x1, y1), and more generally αt(xt) := p(xt, y1, . . . , yt), derive the
formula for α2 (i.e., p(x2, y1, y2)) in terms of α1. Note that this time you will need to marginalize
out x1.

(d) (2 points) Show the generalization of the formula you derived in the previous subproblem: the
formula for p(xt, y1, . . . , yt) or αt(xt) in terms of αt−1. You should get the standard forward
update of the famous forward-backward algorithm.

(e) (3 points) Returning to the full joint probability, write the formula for p(yT |xT−1) and simplify.
We will call this quantity βT−1(xT−1).

(f) (4 points) Write the formula for βT−2(xT−2), which will need to sum over all values of xT−1 (i.e.,
p(yT−1, yT |xT−2)), and then write the general formula for βt−1(xt−1) (i.e., p(yt, . . . , yT |xt−1)). You
should get the standard backward update of the famous forward-backward algorithm, which
uses the values of βt(xt). Show how this formula comes from marginalizing out the irrelevant
variables.

(g) (3 points) Using α and β, write the expression for p(xt, y1, . . . , yT), or the joint probability of
any one state xt and all the observations y1, . . . , yT . Then show the formula for the conditional
probability p(xt|Y).

(h) (6 points) When running forward-backward, in practice, one must normalize the α and β mes-
sages to avoid numerical underflow. For forward messages α, normalization amounts to com-
puting p(xt|y1, . . . , yt) instead of the joint probability p(xt, y1, . . . , yt). There is not as natural an

1

interpretation for the normalized β message β̃t(xt) := βt(xt)/
∑

x′
t
βt(x

′
t). Show that normalizing

the α and β messages to α̃ and β̃ then normalizing the final product still yields the correct con-
ditional probability p(xt|Y). Hint: use the conditional definition of α̃, and write the definition of
β̃ in terms of the unnormalized β. Use a placeholder Zt for the normalizing constant of each βt
and show that terms cancel in the last stage of the normalization.

2. (5 points) Project status report. Write a 1-2 page summary of your progress so far on the project.
Describe what you have accomplished so far on your project, whether any project goals have evolved
since the proposal, and what is planned for the rest of the project period.

Programming Assignment

For this programming assignment, we have provided a lot of starter code. Your tasks will be to complete
the code in a few specific places, which will require you to read and understand most of the provided code,
but will only require you to write a small amount of code yourself.

1. (10 points) Complete markovChainTrain.m, which takes a sequence of data as input and learns the
maximum likelihood transitions. Given data {x1, . . . , xT } with each variable one of K states, the
model should train a prior

p(x = i)← 1

T +Kα

(
α+

T∑
t=1

I(xt = i)

)
,∀i (1)

and a transition probability

p(xt = i|xt−1 = j)← (# time steps where state j transitions to state i) + α

(# of times process is in state j in the first T − 1 steps) +Kα
(2)

Test this function using runObama.m, which loads a speech transcript by President Obama and trains a
Markov chain on his word usage. It should generate somewhat convincing text that sometimes reads
like real English. Try running the same procedure on other text documents!

2. (12 points) Complete myHmmInferStates.m, which performs the forward-backward algorithm to infer
the latent state probabilities of a hidden Markov model. Refer to the textbook and the class videos
(and what you derived in the written section) for the formulas you’ll need to implement. You are
responsible for three segments of this algorithm implementation: the forward message-passing, the
backward-message passing, and the fusion of the forward and backward messages to compute the
marginal probabilities.

Once you get this function working, part of the runSyntheticExperiments.m script will run. The
first test this script runs is to evaluate the log likelihood of the synthetic data using the true models
they were generated from. If your code is working, you should see that the models that generated the
corresponding data sets will have the highest log likelihood (i.e., model 1 should have the highest for
data 1, model 2 for data 2, and model 3 for data 3). The rest of the script will not work yet, until you
finish the next step.

3. (6 points) Complete myHmmTrain.m. You are only responsible for a small snippet of this function: the
M-step update for the Gaussian parameters. It will be very helpful to understand the rest of the
provided implementation to write this snippet.

Once you complete this step, you will be able to run the full synthetic experiment. The experiment
trains HMMs on the three data types, then evaluates the log likelihood of each data set (train and
test) under each learned HMM. If everything is working correctly, you should see significantly higher
likelihoods for the correct HMMs. Finally, the script plots the Gaussians of each state from the trained
HMMs under the Gaussians of each state from the true HMM that generated the data. The trained
Gaussians should look similar to the true Gaussian if your code is working correctly.

2

4. (0 points) Your code should run on the real data, which is a time series of a four daily weather mea-
surements (low and high temperature, overall precipitation, and snowfall) taken from the Blacksburg
NOAA weather station over approximately 30 years. Run the script runWeatherExperiment.m (which
should take a few minutes to complete, even if you vectorize your implementations). The script will
train HMMs using different numbers of hidden states and evaluate them on held-out data. The script
is not set up to run with very high numbers of hidden states, even though the initial experiments indi-
cate that more states will yield a better fit model. Instead, once it sweeps through different numbers
of hidden states, it visualizes the trained parameters of the HMM with four hidden states as well as
the inferred state probabilities for the test period. The learned states have an intuitive interpretation.

5. (2 points) Prepare a short writeup describing what files you modified, any special instructions for us
to understand your submission.

Table 1: Included files and brief descriptions.

File Path Description

blacksburgWeather.mat Weather data from Blacksburg NOAA station
obama15.txt Transcript of 2015 State of the Union Address
synthObservations.mat Synthetic observations from HMMs
synthStates.mat States of sampled HMM sequence used to generate observations
trueModels.mat HMM parameters used to generate synthetic data
src/gaussianLL.m Script that computes the log likelihood of points under a Gaussian

distribution
src/loadWordSequence.m Function that loads a text file into a sequence of indices from a dictio-

nary of words
src/logsumexp.m Function that computes log(sum(exp(X))) in numerical stable manner
src/makeSyntheticData.m Script that generates the synthetic data. You do not need to run this

script since all the relevant output is saved in mat files
src/markovChainTrain.m Function you will complete to train a Markov model (without hidden

variables) on an observed sequence
src/myHmmInferStates.m Function you will complete that performs inference via the forward-

backward algorithm on an HMM
src/myHmmTrain.m Function you will complete to train a hidden Markov model on an

observed sequence of observations
src/plotGMM.m Function that plots ellipses representing the Gaussians in a mixture

model.
src/runSyntheticExperiment.m Script that runs the main HMM experiment.
src/runObama.m Script that runs the Markov chain experiment .
src/runWeatherExperiment.m Script that runs the real-data HMM experiment, training HMMs on

Blacksburg weather data.
src/sampleGaussian.m Script that samples data from a multivariate Gaussian distribution.

You won’t need this, but it’s used to generate the synthetic data.
src/sampleMultinomial.m Script that samples data from a multinomial distribution. You won’t

need this, but it’s used to generate the synthetic data.

3

