
Machine Learning Fall 2015 Homework 3

Make sure to explain you reasoning or show your derivations. Except for answers that are especially
straightforward, you will lose points for unjustified answers, even if they are correct.

General Instructions

Submit your homework electronically on Canvas. We recommend using LaTeX, especially for the written
problems. But you are welcome to use anything as long as it is neat and readable.

Include a README file that describes all other included files. Indicate which files you modified. You are
welcome to create additional functions, files, or scripts, and you are also welcome to modify the included
interfaces for existing functions if you prefer a different organization.

Since we will work on some of the homework in class, clearly indicate which parts of your submitted
homework are work done in class and which are your own work.

Relatedly, cite all outside sources of information and ideas. List any students you discussed the home-
work with.

Written Problems

1. Machine learning methods can be viewed as function estimators. Consider the logical functions AND,
OR, and XOR. Using a signed representation for Boolean variables, where input and output variables
are in {+1,−1}, these functions are defined as

AND(x1, x2) =

{
+1 if x1 = +1 ∧ x2 = +1

−1 otherwise
(1)

OR(x1, x2) =


+1 if x1 = +1

+1 if x2 = +1

−1 otherwise

(2)

XOR(x1, x2) =


+1 if x1 = +1 ∧ x2 = −1
+1 if x2 = +1 ∧ x1 = −1
−1 otherwise

(3)

(a) (4 points) Which of these three logical functions can be expressed as a linear classifier of the form

f(x;w) = sign(w1x1 + w2x2 + b), (4)

and show weights w1, w2, and bias values b that mimic these logical functions. Which of these
functions cannot be expressed as a linear classifier?

(b) (5 points) For any logical functions that cannot be expressed as a linear classifier, show how it
can be expressed as a two-layered perceptron of the form

f(x;w) = sign(wout>h+ bout) (5)

h = [h1, h2]
> (6)

h1 = sign(w(1)>x+ b(1)) (7)

h2 = sign(w(2)>x+ b(2)) (8)

2. Derive the dual support vector machine (SVM) from first principles. To simplify the work, we will do
the derivation without a bias and assuming the data is separable. The classification objective is

f(x;w) = sign(w>x) (9)
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For each data point xi, a constraint that ensures that the point is correctly classified with a margin is

yiw
>xi − 1 ≥ 0. (10)

A vector w that satisfies all these constraints for i ∈ {1, . . . , n} perfectly classifies all the training data.

(a) (5 points) For a vector w and for two data examples x+ and x− whose labels are respec-
tively y+ = +1 and y− = −1, what is the smallest possible distance between the points√

(x+ − x−)>(x+ − x−) if the two points satisfy the margin constraint, Equation (10)? Hint:
the closest possible points will be aligned along the normal vector of the decision boundary, so
x+ = x− + γw for some γ.

(b) (3 points) The answer you derive in part (a) should reveal why the primal max-margin SVM
objective is

argmin
w

1

2
w>w (11)

s.t. yiw
>xi − 1 ≥ 0, ∀i ∈ {1, . . . , n}

Convert this constrained optimization into a minmax of a Lagrangian function L(w,α) by using
Lagrange multipliers to penalize violations of the inequality constraints. For consistency, use
α = [α1, . . . , αn]

> as the symbol for your Lagrange multipliers. Write the saddle-point optimiza-
tion over w and α, and indicate which variables are being minimized over and which are being
maximized over. Your optimizations should be over w ∈ Rd and α ∈ Rn

+, where R+ is the set of
nonnegative real numbers. Hint: be careful about the sign of the Lagrange multipliers and the
constraint functions. Plug in some values to make sure the “adversary” can penalize constraint
violations with nonnegative αs.

(c) (5 points) Reversing the original outer minimization and the inner maximization, we obtain the
dual objective function. We also obtain an inner minimization that has a closed form solution. For
a fixed vector of Lagrange multipliers α, what is the value of w that minimizes the Lagrangian
function?

(d) (6 points) Plug in your solution tow and simplify the new objective function. You should obtain
a quadratic program over the α variables where all instances of the data vectors x occur in inner
products of the form x>i xj . Hint: an easier way to manage these equations is to substitute your
solution for one of the w vectors in the w>w term first, then cancel out as many terms as you
can before plugging your solution into any remaining w terms. For example, if you derived
w = blah, start by simplifying the expression w>(blah) and canceling with any similar terms
from your Lagrangian.

(e) (2 points) Finally, replace all inner products of the form x>i xj with a kernel function K(xi, xj).
Write the kernelized dual SVM optimization.

Programming Assignment

For this programming assignment, we have provided a lot of starter code. Your tasks will be to complete
the code in a few specific places, which will require you to read and understand most of the provided code,
but will only require you to write a small amount of code yourself.

In syntheticData.mat, there are 10 synthetic, two-dimensional data sets. All but the first data set are
not linearly classifiable. We provided the main experiment script runSyntheticExperiments.m for you to
use. For each model, the script uses cross-validation on the training data to choose learning parameters,
trains on the full training set using those parameters, and evaluates the accuracy on the test set.

1. (8 points) Complete the backpropagation steps in mlpObjective.m for the multi-layered perceptron.
Specifically, you will need to compute the gradient for the output-layer weights, then the error and
gradients for the middle-layer weights, and finally the error and gradient for the input-layer. Once
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you complete this step, the script checkMLPDerivative.m should run and report a derivative is close
to the numerical approximation. (It won’t pass the hard-coded 1e-6 threshold, so it will crash. But
if the error is around 1e-6 in magnitude, it is correct.) Once the gradient computation is correct, the
experiment using multi-layered perceptron on the synthetic data sets should run.

2. (8 points) Complete the kernel SVM kernelSvmTrain.m and kernelSvmPredict.m. In each function,
there is a block of code for you to fill in. In kernelSvmTrain, set up the quadratic program to compute
the dual SVM objective. We have provided the call to the quadprog function, the processing of the out-
put alpha values, and the storage of the support vectors into the model struct. In kernelSvmPredict,
compute the kernelized prediction score directly from the Gram matrix, the alpha dual variables, the
support vector labels, and the bias.

Once you complete this step, the linear kernel dual SVM should work.

3. (5 points) Complete the polynomial kernel function polynomialKernel.m. To see how a kernel
function should work, look at linearKernel.m as a template. Calling polynomialKernel(X, Y, 1)

should produce the exact same output as linearKernel(X, Y). Once you complete this step and the
previous step, the polynomial kernel experiment should run.

4. (5 points) Complete the Gaussian radial basis function kernel function rbfKernel.m. Make sure to
use the trick for computing all pairwise distances between two sets of points that we used in the last
homework.

5. (4 points) Once all four methods are working, run the experiment script in publish mode, which will
iterate through each data set and plot the learned decision boundaries for each data set and each
model type. Write a short report (one paragraph is sufficient, but feel free to write more) about the
results. Which methods worked best on these synthetic data sets? Is there a pattern to when certain
methods work well or not?
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Table 1: Included files and brief descriptions. Unless indicated here in bold, the source files are just place-
holders for code you should complete. You should not need to implement or modify bolded files.

File Path Description

syntheticData.mat Synthetic data

src/checkMLPDerivative.m Script to check the gradient computation of multi-layer perceptron

src/crossValidate.m Wrapper to run cross validation

src/kernelSvmPredict.m Function you will complete that predicts labels using kernel SVM

src/kernelSvmTrain.m Function you will complete that trains a kernel SVM

src/linearKernel.m Function that computes the linear kernel between two sets of data

src/logistic.m Function that computes the logistic of each dimension of its input

src/mlpFlatObjective.m Wrapper function to help gradient checking of multi-layered percep-
tron

src/mlpObjective.m Function you will complete that computes the regularized loss and
gradient for a multi-layered perceptron

src/mlpPredict.m Function that performs forward-propagation to predict labels using
a multi-layered perceptron

src/mlpTrain.m Function that runs vanilla gradient descent to train the weights of a
multi-layered perceptron

src/nll.m Function that computes the negative log likelihood of Bernoulli prob-
abilities given the true labels and its gradient

src/plotData.m Function that plots 2D, binary-class data

src/plotSurface.m Function that plots the decision boundary for 2D inputs

src/polynomialKernel.m Function you will complete that computes the polynomial kernel
matrix between two sets of data points

src/rbfKernel.m Function you will complete that computes the Gaussian radial-basis
function kernel between two sets of data points

src/runSyntheticExperiments.m Main experiment script that runs all four models on all ten data sets
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