
Machine Learning Fall 2015 Homework 2

Make sure to explain you reasoning or show your derivations. Except for answers that are especially
straightforward, you will lose points for unjustified answers, even if they are correct.

General Instructions

Submit your homework electronically on Canvas. We recommend using LaTeX, especially for the written
problems. But you are welcome to use anything as long as it is neat and readable.

Include a README file that describes all other included files. Indicate which files you modified. You are
welcome to create additional functions, files, or scripts, and you are also welcome to modify the included
interfaces for existing functions if you prefer a different organization.

Since we will work on some of the homework in class, clearly indicate which parts of your submitted
homework are work done in class and which are your own work.

Relatedly, cite all outside sources of information and ideas. List any students you discussed the home-
work with.

Written Problems

1. (Based on Murphy 8.5) Multiclass logistic regression has the form

p(y|x;W ) :=
exp(w>y x)∑C
c=1 exp(w

>
c x)

(1)

where W is a d×C weight matrix (for C classes and d dimensional data). This formulation is natural,
but it includes some redundancy. For C classes, we can arbitrarily define wC = ~0, without loss of
generality for the last class C, since p(y = C|x;W ) = 1−

∑C−1
c=1 p(y = c|x;W ). In this case, the model

has the form

p(y|x;W ) :=
exp(w>y x)

1 +
∑C−1

c=1 exp(w>c x)
. (2)

If we don’t “clamp” one of the vectors to some constant value, the parameters will be unidentifiable,
meaning that multiple parameters can yield the same model. The extra vector creates an extra de-
gree of freedom for each dimension. However, suppose we don’t clamp wc = 0, so we are using
Equation (1), but we add `2 regularization by solving

Ŵ = argmin
W

λ

2

C∑
c=1

||wc||22 −
n∑

i=1

log p(yi|xi;W ) (3)

Prove that this regularization removes the extra degree of freedom by showing that at the optimum,
the weights for all classes along any single dimension will always sum to zero,

C∑
c=1

wc[j] = 0, ∀j ∈ {1, . . . , d}. (4)

2. For binary classification, the perceptron prediction rule is

f(x) =

{
+1 if w>x > 0

−1 if w>x ≤ 0
, (5)

And the perceptron learning update for example (y,x), where y ∈ {−1, 1} is

w ←

{
w if f(x) = y

w + yx if f(x) 6= y
. (6)
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(a) The perceptron update is often argued to be a gradient step. But what objective function is
it optimizing? Extrapolate the function J for which the perceptron update is a gradient step
w ← w −∇wJ .

(b) This function should look like a loss function: a penalty on the misclassification of a single data
example. We can easily use the same loss function on a batch of data, summing up the total
penalty for all examples, and do batch learning with the perceptron loss function. Write a batch-
learning objective function using the perceptron loss.

(c) If you are given linearly separable data, and a w that correctly classifies all data, what is the
value of your objective from part (b)? Are there other vectors w that achieve the same objective
score?

(d) If you have data that is not linearly separable, that is, no vector w can correctly classify every
point, what is the optimal w for the objective from part (b)?

(e) Why does the perceptron algorithm still work despite the degeneracies these exercises reveal
about perceptron loss?

Programming Assignment

For this assignment, you will run an experiment comparing different versions of linear classifiers for multi-
class classification. You are welcome to use as much or as little of the starter code as you prefer. But make
sure to examine all the starter code before you start, in case there is something we have provided that you don’t
necessarily need to build yourself.

Models

The three models you will implement are perceptron, logistic regression, and Gaussian naive Bayes (with
spherical covariance). The multiclass forms of these models are summarized here.

Multiclass Perceptron The multiclass perceptron uses a weight vector for each class, which can conve-
niently be represented with a matrix W = {w1, . . . ,wC}. The prediction function is

fperc(x) := argmax
c∈{1,...,C}

w>c x = argmax
c∈{1,...,C}

[
W>x

]
c
. (7)

The multiclass perceptron update rule when learning from example xt, ground-truth label yt is.

wyt ← wyt + xt (8)
w(fperc(x)) ← w(fperc(x)) − xt (9)

Multiclass Logistic Regression Multiclass logistic regression also uses a weight vector for each class, and
in fact has the same prediction formula as perceptron.

flr(x) := argmax
c∈{1,...,C}

w>c x = argmax
c∈{1,...,C}

[
W>x

]
c
. (10)

The key difference is that it is built around a probabilistic interpretation:

plr(y|x;W ) :=
exp(w>y x)∑C
c=1 exp(w

>
c x)

. (11)

For data set D = {(x1, y1), . . . , (xn, yn)}, the regularized negative log likelihood is

L(D) =
λ

2
||W ||2F +

n∑
i=1

log

(∑
c

exp(w>c xi)

)
−

n∑
i=1

w>yi
xi (12)

2



where ||W ||2F is the squared Frobenius norm
∑

ij wi[j]
2, and the gradient of the log likelihood is

∇wcL = λwc +

n∑
i=1

xi

(
exp(w>c xi)∑
c′ exp(w

>
c′xi)

− I(yi = c)

)
(13)

= λwc +

n∑
i=1

xi (plr(y|xi;W )− I(yi = c)) (14)

Gaussian Naive Bayes Naive Bayes with uniform, spherical-covariance Gaussian feature distributions
are also linear classifiers. Though it’s possible to derive a similar weight matrix as the previous two meth-
ods, it’s much more natural to keep a Gaussian naive Bayes (GNB) model its standard form, with a mean
for each class. For simplicity, and to provide some control, we will set the covariance parameter σ manually,
so it can act as a regularization parameter. Then the prediction function is

fgnb(x) := argmax
c∈{1,...,C}

p(c;θ)

d∏
j=1

1

σ
√
2π

exp

(
− 1

2σ2
(x[j]− µc[j])

2

)
(15)

= argmax
c∈{1,...,C}

log p(c;θ)− 1

2σ2

d∑
j=1

(x[j]− µc[j])
2 (16)

= argmax
c∈{1,...,C}

log p(c;θ)− 1

2σ2
(x− µc)

>(x− µc) (17)

And training the parameters for the model involve fitting the mean vectors for each class µc to the observed
means of each class,

µc ←
1

nc

∑
i:yi=c

xi , (18)

where nc is the number of examples from class c, and fitting the multinomial distribution for the classes

θc =
nc + α

n+ αC
. (19)

Using this formulation of a GNB model, you will need to consider two regularization parameters: α and σ.
Both control how sensitive the model components are to the observed data.

Tasks

1. Construct two types of two-dimensional, synthetic data sets:

(a) Linearly separable data: data that the perceptron prediction rule would be able to correctly clas-
sify into its correct classes. In other words, each data point is labeled by some actual linear
weight matrix W .

(b) Non-separable data: data that no perceptron prediction rule should be able to classify. One way
to create this type of data is to create linearly separable data and randomly change some labels,
or alternatively add random noise to the features after they have been cleanly labeled.

For each type, create data sets with 100 two-dimensional training points and 100 test points, with
some points in each of four classes (some imbalance is fine, but try to make sure each class has at least
roughly 10 points). It can help to first create a predictor function for the linear models.

2. Implement perceptron. Implement online training by iterating through the training set one example
at a time. After each update, compute the training accuracy and testing accuracy for each iteration
and plot the results after seeing 1,000 examples (10 sweeps through the data, or epochs). Discuss the
behavior of perceptron you see for separable and non-separable data.

3



3. Implement multiclass logistic regression. This task will likely be the most amount of work for the
assignment. We have provided a training function logRegTrain.m that you are welcome to use, which
uses MATLAB’s optimization toolbox function fminunc1 to minimize the negative log likelihood. To
use this training function and its gradient-based optimizer, implement the function logRegNLL, which
takes the weight matrix, the data, and model parameters and outputs the negative log likelihood and
the gradient. We have included useful utility for computing the log likelihood in logsumexp.m, which
computes log(sum(exp(x))) in a numerically stable way.

If you want to write your own calls to the optimizer, an example of how to do this is as follows:

[nll, gradient] = logRegNLL(W, trainData, trainLabels, params)

Then for a training set trainData and trainLabels, pass an anonymous function to fminunc with

objective = @(x) logRegNLL(x, trainData, trainLabels, params);

options = optimoptions(@fminunc, ...

’DerivativeCheck’,’off’,...

’GradObj’,’on’,...

’Display’,’final’,...

’Algorithm’, ’quasi-newton’,...

’MaxIter’, 2000);

W0 = zeros(numDimensions, numClasses);

W = fminunc(objective, W0, options);

where the options struct contains options for the optimizer. DerivativeCheck will numerically es-
timate the derivative of your objective function and compare it to your computed derivative. This
numerical derivative checking can become very slow in high dimensions, but should help you de-
bug for the 2D data. GradObj tells the optimizer that your function provides the gradient, Display
determines how much console feedback the optimizer gives, Algorithm chooses between different
optimization algorithms (I recommend keeping this set to quasi-newton), and MaxIter is the itera-
tion at which the optimizer will give up on solving for the optimization. A useful tool is to also add
the option pair ’PlotFcns’, @optimplotfval, which will plot the objective value and allow you to
interactively and gracefully stop the optimization if it’s taking too long.

Note that these optimizers take initial points (e.g., W0 in the example code above). One useful strategy
is to take advantage of this functionality when sweeping over parameters. E.g., once you’ve solved
for the optimal W for some λ, if you make a small change to λ, you should expect the new solution
to be close, so using the previous solution as the initial point will make the optimization a lot faster
than starting from the origin. The included logRegTrain.m takes in an optional starting point for this
reason.

For various values of λ, train logistic regression and report the training and testing accuracy of each
model for each data set type. Try to find values of λ that allow you to discern a trend. Discuss your
findings.

4. Implement Gaussian naive Bayes. Choose a reasonable range of values for parameters α and σ. Com-
pare training and testing accuracy for all combinations of α and σ parameters.

5. Compare and plot the best (post hoc) observed performance among the three linear classifiers.2

6. Run analogous experiments (steps 2-6) on the cardiotocography data. The data includes measure-
ments from fetal cardiotocograms that medical experts diagnosed into ten possible diagnosis classes.3

1You can also use Mark Schmidt’s minFunc http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html, which is free and usu-
ally much faster. Or you can implement your own basic gradient descent function.

2We aren’t doing cross-validation here to save time, but the best possible test performance is a reasonable approximation of the
best possible performance if we had tuned the regularizers ideally. The best thing to do would be to do cross-validation and testing,
but for this homework, the post-hoc comparison is sufficient.

3https://archive.ics.uci.edu/ml/datasets/Cardiotocography
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Compare how the perceptron model behavior changes as it sees more examples, how logistic regres-
sion and Gaussian naive Bayes behave as you vary the regularization parameters. You may want
to adjust the granularity of your measurements. For example, you may only measure testing and
training performance on perceptron weights only once per epoch, or you may use a coarser set of
regularization parameter values.

Write a report on your findings. Include plots of the performance as well as example plots of the 2D data
and classification labels to help you understand and explain the behavior of the models. Use either plots or
tables for comparing performance. Look for similarities between the model behavior as well as differences
and hypothesize about why there are similarities and differences.
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Table 1: Included files and brief descriptions. Unless indicated here in bold, the source files are just place-
holders for code you should complete. You should not need to implement or modify bolded files.

File Path Description

Cardiotocography.mat Original data loaded manually from Excel spreadsheet (yuck)

processedCardio.mat Processed data with values centered and scaled to unit variance

src/gnbPredict.m Predictor function for Gaussian naive Bayes (GNB) model, which
takes a GNB model and a data set and outputs a label vector.

src/gnbTrain.m Training function for GNB model, which takes a training set with la-
bels and parameters and outputs a GNB model.

src/linearPredict.m Linear classifier prediction function, which takes a matrix of linear
weights and a data set and outputs a label vector.

src/logRegNLL.m Objective function for the logistic regression negative log likelihood.
The function takes in a weight matrix, a data matrix, a label vector,
and parameters and outputs the negative log likelihood and the gra-
dient with respect to the weights.

src/logRegTrain.m Training function for logistic regression, which takes a training set
with labels and parameters and outputs a model. This function is
complete and will work once you implement logRegNLL.m.

src/logsumexp.m Utility function that computes log(sum(exp(x))) in a numerically
stable way that avoids floating point underflow. This function is
complete and should be useful for implementing logRegNLL.m.

src/perceptronUpdate.m Weight update function that takes a data point, a model containing a
weight matrix, and a label and outputs the updated model according
to the perceptron online learning rule.

src/plotPredictions.m Utility that plots 4-class 2D data with color-coded correct and incor-
rect predictions. This function is included to give you an example
of how to visualize this kind of data.

src/processData.m Script that loads the raw cardiotogography data and centers and
scales the data. This script is complete and you should not need
to modify it.

src/runCardioExperiments.m Main driver script for experiments. The provided version contains
the outline of the tasks.

src/runSyntheticExperiments.m Main driver script for experiments. The provided version contains
the outline of the tasks.
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