
Machine Learning Fall 2015 Homework 1

Homework must be submitted electronically following the instructions on the course homepage. Make sure
to explain you reasoning or show your derivations. Except for answers that are especially straightforward,
you will lose points for unjustified answers, even if they are correct.

General Instructions

Submit your homework electronically on Canvas. We recommend using LaTeX, especially for the written
problems. But you are welcome to use anything as long as it is neat and readable.

Include a README file that describes all other included files. Indicate which files you modified. You are
welcome to create additional functions, files, or scripts, and you are also welcome to modify the included
interfaces for existing functions if you prefer a different organization.

Since we will work on some of the homework in class, clearly indicate which parts of your submitted
homework are work done in class and which are your own work.

Relatedly, cite all outside sources of information and ideas. List any students you discussed the home-
work with.

Written Problems

1. (5 points, Based on Murphy 2.2) Suppose a crime has been committed. Blood is found at the scene
for which there is no innocent explanation. It is of a type that is present in 1% of the population. A
suspect who has this rare blood type has been charged with the crime.

The prosecutor claims: “There is a 1% chance that the defendant would have the crime blood type if
he were innocent. Thus there is a 99% chance that he is guilty.” This is known as the prosecutor’s
fallacy. What is wrong with this argument?

2. A Bernoulli distribution has the following likelihood function for a data set D:

p(D|θ) = θN1(1− θ)N0 , (1)

where N1 is the number of instances in data set D that have value 1 and N0 is the number in D that
have value 0. The maximum likelihood estimate is

θ̂ =
N1

N1 +N0
. (2)

(a) (5 points) Derive the maximum likelihood estimate above by solving for the maximum of the
likelihood. I.e., show the mathematics that get from Equation (1) to Equation (2).

(b) (5 points) Suppose we now want to maximize a posterior likelihood

p(θ|D) = p(D|θ)p(θ)
p(D)

, (3)

where we use the Bernoulli likelihood and a (slight variant1 of a) symmetric Beta prior over the
Bernoulli parameter

p(θ) ∝ θα(1− θ)α. (4)

Derive the maximum posterior mean estimate.

1For convenience, we are using the exponent of α instead of the standard α− 1.

1

3. (Based on Murphy 3.19) Let xiw = 1 if word w occurs in document i and xiw = 0 otherwise. Let θcw
be the estimated probability that word w occurs in documents of class c. Then the log-likelihood that
document x belongs to class c is

log p(xi|c, θ) = log

W∏
w=1

θxiw
cw (1− θcw)1−xiw (5)

=

W∑
w=1

xiw log θcw + (1− xiw) log(1− θcw) (6)

=

W∑
w=1

xiw log
θcw

1− θcw
+
∑
w

log(1− θcw), (7)

where W is the number of words in the vocabulary. We can write this more succinctly as

log p(xi|c, θ) = φ(xi)>βc (8)

where xi := (xi1, . . . , xiW) is a bit vector, φ(x) := (x, 1), and

βc :=

(
log

θc1
1− θc1

, . . . , log
θcW

1− θcW
,
∑
w

log(1− θcw)

)>
. (9)

This is a linear classifier, since the class-conditional density is a linear function (an inner product) of
the parameters βc.

(a) (4 points) Assuming p(C = 1) = p(C = 2) = 0.5, write an expression for the log posterior odds
ratio, log2

p(ci=1|xi)
p(ci=2|xi)

, in terms of the features φ(xi) and the parameters β1 and β2.

(b) (4 points) Ideally, words that occur in both classes are not very discriminative and therefore
should not affect our beliefs about the class label. State the conditions on θ1w and θ2w (or equiv-
alently the conditions on β1w and β2w) under which the presence or absence or w in a test doc-
ument will have no effect on the class posterior. (Such a word will be ignored by the classifier.)
Hint: using your previous result, figure out when the posterior odds ratio is 0.5/0.5.

(c) (4 points) The posterior mean estimate of θ, using a Beta(1, 1), is given by

θ̂cw =
1 +

∑
i∈c xiw

2 + nc
, (10)

where the sum is over the nc documents in class c. Consider a particular word w, and suppose it
always occurs in every document regardless of class. Consider a two-class problem with n1 6= n2
(e.g., where we get more non-spam than spam, or other situations with class imbalance). If we
use the above estimate for θcw, will word w be ignored by our classifier? Why or why not?

(d) (3 points) What other ways can you think of that encourage irrelevant words to be ignored?

Programming Assignment

For this homework, you will build two text categorization classifiers: one using naive Bayes and the other
using decision trees. You will write general code for cross-validation that will apply to either of your
classifiers.

Data and starter code: In the HW1 archive, you should find the 20newsgroups data set (also available
from the original source http://qwone.com/~jason/20Newsgroups/). This data set, whose origin is some-
what fuzzy, consists of newsgroup posts from an earlier era of the Internet. The posts are in different
categories, and this data set has become a standard benchmark for text classification methods.

2

http://qwone.com/~jason/20Newsgroups/

The data is represented in a bag-of-words format, where each post is represented by what words are
present in it, without any consideration of the order of the words.

Your required tasks follow.

1. (0 points) Examine the included files, which are described in Table 1. Look at the template training
and prediction functions majorityTrain.m and majorityPredict.m. The training function takes a
data set, labels, and some parameters as input and outputs a model, and the prediction algorithm
takes a data example and a model and outputs a prediction. The functions you will write should
follow this prototype.

Notice that the loading script loadAllData.m binarizes the word counts. You may change this if you
want, but by making the observed values Bernoulli (binary) random variables, your classifiers will be
quite a bit simpler than otherwise.

2. (5 points) Write function computeInformationGain.m. The function should take in training data and
training labels and computes the information gain for each feature. That is, for each feature dimension,
compute

G(Y,Xj) = H(Y)−H(Y |Xj)

= −
∑
y

Pr(Y = y) log Pr(Y = y)+

∑
xj

Pr(Xj = xj)
∑
y

Pr(Y = y|Xj = xj) log Pr(Y = y|Xj = xj).

(11)

Your function should return the vector

[G(Y,X1), . . . , G(Y,Xd)]
>. (12)

You will use this function to do feature selection and as a subroutine for decision tree learning.

3. (5 points) Write the functions naiveBayesTrain and naiveBayesPredict. The training algorithm
should find the maximum likelihood parameters for the probability distribution

Pr(yi = c|xi) =
Pr(yi = c)

∏
w∈W Pr(xiw|yi = c)

Pr(xi)
.

Make sure to use log-space representation for these probabilities, since they will become very small,
and notice that you can accomplish the goal of naive Bayes learning without explicitly computing the
prior probability Pr(xi). In other words, you can predict the most likely class label without explicitly
computing that quantity.

Implement symmetric Beta regularization for your naive Bayes learner. One natural way to do this is
to let the input parameter params simply be the prior count for each word. For a parameter α, this
would mean your maximum likelihood estimates for any Bernoulli variable X would be

Pr(X) =
(# examples where X) + α

(Total # of examples) + 2α
.

Notice that if α = 0, you get the standard maximum likelihood estimate.

4. (5 points) Write the functions decisionTreeTrain and decisionTreePredict. You’ll have to design
a way to represent the decision tree in the model object. Your training algorithm should take a param-
eter that is the maximum depth of the decision tree, and the learning algorithm should then greedily
grow a tree of that depth. Use the information-gain measure to determine the branches (hint: you’re
welcome to use your computeInformationGain.m function). Algorithm 1 is abstract pseudocode de-
scribing one way to implement decision tree training. You are welcome to deviate from this somewhat;
there are many ways to correctly implement such procedures.

3

Algorithm 1 Recursive procedure to grow a classification tree
1: function FITTREE(D, depth)
2: if not worth splitting (because D is all one class or max depth is reached) then
3: node.prediction← argmaxc

∑
(x,y)∈D I(y = c)

4: return node
5: w ← argmaxw′ G(Y,Xw) . See Equation (11)
6: node.test← w
7: node.left← FITTREE(DL, depth+1) . where DL := {(x, y) ∈ D|xw = 0}
8: node.right← FITTREE(DR, depth+1) . where DR := {(x, y) ∈ D|xw = 1}
9: return node

The pseudocode suggests building a tree data structure that stores in each node either (1) a prediction
or (2) a word to split on and child nodes. The pseudocode also includes the formula for the entropy
criterion for selecting which word to split on.

The prediction function should have an analogous recursion, where it receives a data example and a
node. If the node has children, the function should determine which child to recursively predict with.
If it has no children, it should return the prediction stored at the node.

5. (5 points) Write the function crossValidate.m, which takes a training algorithm, a prediction al-
gorithm, a data set, labels, parameters, and the number of folds as input and performs cross-fold
validation using that many folds. For example, calling

params.alpha = 1.0;

score = crossValidate(@naiveBayesTrain, @naiveBayesPredict, trainData, ...

trainLabels, 10, params);

will compute the 10-fold cross-validation accuracy of naive Bayes using regularization parameter
α = 1.0.

The cross-validation should randomly split the input data set into folds subsets. Then iteratively
hold out each subset: train a model using all data except the subset and evaluate the accuracy on the
held-out subset. The function should return the average accuracy over all folds splits.

6. (5 points) Write a script that performs cross validation on the provided 20newgroups training data
(trainData, trainLabels). Plot the cross-validation accuracy score as you vary the regularization
parameters for each of your classifiers (naive Bayes and decision tree). Choose a reasonable range of
parameter settings so you can see the effect of the parameter values. Use the cross-validation accuracy
to set a regularization parameter for training on the full training data (trainData, trainLabels) and
test on the test set (testData, testLabels). You may base your script on testPredictors.m, but note
that testPredictors.m does not do cross-validation.

7. (5 points) Write a 1-2 page summary of your results. This summary should be short, but it should
very briefly discuss any implementation decisions you made beyond the provided instructions and
display and describe the plots you generated, any discoveries you made about the tuning process,
which method worked better, and your hypotheses on why the results were as you saw.2 Be concise!

2One way to do this rather elegantly in MATLAB is to use the publishing mode. See http://www.mathworks.com/help/matlab/

matlab_prog/publishing-matlab-code.html for more. Using this mode is not required, nor is it especially recommended, but it
might be convenient to try.

4

http://www.mathworks.com/help/matlab/matlab_prog/publishing-matlab-code.html
http://www.mathworks.com/help/matlab/matlab_prog/publishing-matlab-code.html

Table 1: Included files and brief descriptions.

File Path Description

20news-bydate/matlab/test.data Sparse representation of word counts in test data. The first column
is the document ID, the second column is the word ID, and the last
column is the count

20news-bydate/matlab/test.label Labels (from 1 to 20) of each post’s news group

20news-bydate/matlab/test.map Mapping from label numbers to newsgroup names

20news-bydate/matlab/train.data Sparse representation of word counts in training data

20news-bydate/matlab/train.label Labels of each post’s news group

20news-bydate/matlab/train.map Mapping from label numbers to newsgroup names (this should be
identical to test.map)

src/computeInformationGain.m Function you will complete to compute the information gain for
each feature.

src/crossValidate.m Function you will complete to run k-fold cross-validation on data
using a given training function and prediction function

src/decisionTreePredict.m Function you will complete that takes a trained decision tree and
a data example and predicts a label

src/decisionTreeTrain.m Function you will complete that takes a data set, labels, and learn-
ing parameters, and returns a trained decision tree model

src/loadAllData.m Script to load data into sparse matrices in MATLAB

src/majorityPredict.m Function that takes a “trained” majority “model” and a data exam-
ple and predicts the majority class

src/majorityTrain.m Function that a data set, labels, and (empty) learning parameters,
and returns a “model” that indicates the majority class from the
labels

src/naiveBayesPredict.m Function you will complete that takes a trained naive Bayes model
and a data example and predicts a label

src/naiveBayesTrain.m Function you will complete that takes a data set, labels, and learn-
ing parameters, and returns a trained naive Bayes model

src/testPredictors.m Example script for running your predictors. This script does not do
cross validation. It only uses hard-coded settings for regularization
parameters.

5

