
2/17/20

1

Code Clones

Spiros Mancoridis[1]
Modified by Na Meng

1

Overview

• Definition and categories
• Clone detection
• Clone removal refactoring

2

2

2/17/20

2

Code Clones

• Code clone is a code fragment in source
files that is identical or similar to
another

• Code clones are either within a program
or across different programs

• Clone pair: two clones
• Clone class: a set of fragments which

are clones to each other

3

3

Code Clone Categorization

• Type-1 clones
– Identical code fragments but may have

some variations in whitespace, layout, and
comments

• Type-2 clones
– Syntactically equivalent fragments with

some variations in identifiers, literals,
types, whitespace, layout and comments

4

4

2/17/20

3

Code Clone Categorization

• Type-3 clones
– Syntactically similar code with inserted,

deleted, or updated statements
• Type-4 clones
– Semantically equivalent, but syntactically

different code

5

5

Key Points of Code Clones

• Pros
– Increase performance
• Code inlining vs. function call

– Increase program readability
• Cons
– Increase maintenance cost
• If one code fragment contains a bug and gets

fixed, all its clone peers should be always fixed
in similar ways.

– Increase code size

6

6

2/17/20

4

Clone Detection Strategies

• Text matching
• Token sequence matching
• Graph matching

7

7

Text Matching

• Older, studied extensively
• Less complex, and most widely used
• No program structure is taken into

consideration
• Type-1 clones & some Type-2 clones
• Two types of text matching
– Exact string match
• Diff (cvs, svn, git) is based on exact text matching

– Ambiguous match
8

8

2/17/20

5

Ambiguous Match

• Longest Common Subsequence match
• N-grams match

9

9

Token Sequence Matching

• A little more complex, less widely used
• No program structure is taken into

account, either
• Type-1 and Type-2 clones
• CCFinder[2]
• CP-Miner[3]

10

10

2/17/20

6

CCFinder

• Step 1: Convert a program with multiple
files to a single long token sequence

• Step 2: Find longest common
subsequence of tokens

11

11

Step 1: Tokenization

12

int main(){
int i = 0;
static int j=5;
while(i<20){

i=i+j;
}
std::cout<<"Hello World"<<i<<std::endl;
return 0;

}

Remove white spaces

12

2/17/20

7

Step 1: Tokenization

13

int main(){
int i = 0;
static int j=5;
while(i<20){
i=i+j;
}
std::cout<<"Hello World"<<i<<std::endl;
return 0;
}

Shorten Names

13

Step 1: Tokenization

14

int main (){
int i = 0;
int j = 5;
while (i < 20){
i = i + j;
}
cout << "Hello World” << i << endl;
return 0;
}

Tokenize literals, and
identifiers of types,
methods, and variables.

14

2/17/20

8

Step 1: Tokenization

15

$p $p(){
$p $p = $p;
$p $p = $p;
while($p < $p){
$p = $p + $p;
}
$p << $p << $p << $p;
return $p;
}

15

Step 2: Find Clones

16

Code clone
detector

CCFinder

Code clone
database

a b c a b c a d e
ca b c a b c a d e c

a, b, c, ... : tokens
: matched position

16

2/17/20

9

Detected Clone Pair Example[2]

17

1. static void foo() throws RESyntaxException {
2. String a[] = new String [] { "123,400", "abc", "orange 100" };
3. org.apache.regexp.RE pat = new org.apache.regexp.RE("[0-9,]+");
4. int sum = 0;
5. for (int i = 0; i < a.length; ++i)
6. if (pat.match(a[i]))
7. sum += Sample.parseNumber(pat.getParen(0));
8. System.out.println("sum = " + sum);
9. }

10. static void goo(String [] a) throws RESyntaxException {
11. RE exp = new RE("[0-9,]+");
12. int sum = 0;
13. for (int i = 0; i < a.length; ++i)
14. if (exp.match(a[i]))
15. sum += parseNumber(exp.getParen(0));
16. System.out.println("sum = " + sum);
17. }

17

Limitations of CCFinder

• All files are converted into a long token
sequence
–When the program contains millions of lines

of code, the tool cannot perform
efficiently

• Do not take into account the natural
boundary between functions and classes

18

18

2/17/20

10

CP-Miner[3]

• Cut the token sequences by considering
basic blocks as cutting units

• Calculate a hashcode for each
subsequence

• Compare hashcode sequences instead of
the original token sequences

19

19

Graph Matching

• Newer, bleeding edge
• More complex
• Type-1, Type-2, and Type-3 clones
• Syntactic and semantic understanding
– AST matching (ChangeDistiller)
– CFG matching (Jdiff[4])
– PDG matching ([5])

20

20

2/17/20

11

CFG-based Clone Detection[4]

• A Differencing Algorithm for Object-
Oriented Programs
–Match declarations of classes, fields, and

methods by name
–Match content in methods by hammock

graphs
• A hammock is a single entry, single exit

subgraph of a CFG

21

21

Example: Enhanced CFG comparison
for P and P’

22

22

2/17/20

12

Hammock Graph Creation

23

23

Algorithm
• Input: hammock node n, n’, look-ahead threshold LH
• Output: set of matched pairs N
• Algorithm

24

1. expand n and n’ one level to graph G and G’
2. Push start node pair <s, s’> to stack ST
3. while ST is not empty
4. pop <c, c’> from ST
5. if c or c’ is already matched then
6. continue;
7. if <c, c’> does not match then
8. compare c with LH successors of c’ or

compare c’ with LH successors of c until find match
9. if a match is found then
10. N = N U {c, c’, “unchanged”}
11. else
12. N = N U {c, c’, “modified”}
13. push the pair’s sink node pair on stack

24

2/17/20

13

Observations

• The look-ahead process is like bounded LCS
algorithm
– It can tolerate statement insertions at the same

level
• The algorithm starts from the outmost

Hammock, so it is similar to top-down tree-
differencing algorithm

• When statements are inserted at the higher
level, the algorithm does not work well
– <c, c’, “modified”>

25

25

PDG-based Clone Detection [5]

• Using Slicing to Identify Duplication in
Source Code
– Step 1: Partition PDG nodes into

equivalence classes based on the syntactic
structure, such as while-loops

– Step 2: For each pair of matching nodes
(r1, r2), find two isomorphic subgraphs
containing r1 and r2

26

26

2/17/20

14

Algorithm to Find Isomorphic
Subgraphs

1. Start from r1 and r2, use backward
slicing in lock step to add predecessors
iff predecessors also match

2. If two matching nodes are loops or if-
statements, forward slicing is also used
to find control dependence successors
(statements contained in the
structure)

27

27

Example

28

28

2/17/20

15

29

29

Observations

• Pros
– Tolerate statement reordering and some

program structure changes
• Cons
– Expensive
• Points-to analysis

– Do not allow ambiguous match

30

30

2/17/20

16

Summary

• Clone detection flexibility
– PDG > CFG|AST > Token > Text

• Cost
– Text < Token < CFG|AST < PDG

31

31

Clone Removal Refactoring

• Extract method
– Extract the common code from different

methods and create a method for it
• Pull up method
– Pull up the duplicated method to the super

class, and declare a new super class if
there is none

32

32

2/17/20

17

33

Extract Method

33

Pull Up Method

34

34

2/17/20

18

Reference
[1] Spiros Mancoridis, Code Cloning:
Detection, Classification, and Refactoring,
https://www.cs.drexel.edu/~spiros/teaching/CS

675/slides/code_cloning.ppt .
[2] Toshihiro Kamiya, Shinji Kusumoto, and
Katsuro Inoue, CCFinder, A Multilinguistic Token-
Based Code Clone Detection System for Large
Scale Source Code, TSE ‘02
[3] Zhenmin Li, Shan Lu, Suvda Myagmar, and
Yuanyuan Zhou, CP-Miner: A Tool for Finding
Copy-paste and Related Bugs in Operating System
Code, OSDI ‘04

35

35

Reference

[4] Taweesup Apiwattanapong, Alessandro
Orso, and Mary Jean Harrold, A
Differencing Algorithm for Object-
Oriented Programs, ASE ’04
[5] Raghavan Komondoor, Susan Horwitz,
Using Slicing to Identify Duplication in
Source Code, SAS ‘01

36

36

