
2/11/20

1

Software Testing

1

Overview

• What is software testing?
• General testing criteria
• Testing strategies
• OO testing strategies
• Debugging

N. Meng, B. Ryder 2

2

2/11/20

2

Software Testing

• Testing is the process of exercising a
program with the specific intent of
finding errors prior to delivery to the
end user.

N. Meng, B. Ryder 3

3

What Does Testing Show?

N. Meng, B. Ryder 4

errors

requirements conformance

performance

an indication
of quality

4

2/11/20

3

Verification and Validation

• Verification refers to tasks to ensure
that software correctly implements a
specific function
– “Are we building the product right?”

• Validation refers to tasks to ensure
that the built software is traceable to
customer requirements
– “Are we building the right product”?

N. Meng, B. Ryder 5

5

Who Tests the Software?

N. Meng, B. Ryder 6

developer independent tester

Understands the system
but, will test "gently"
and, is driven by "delivery"

Must learn about the system,
but, will attempt to break it
and, is driven by quality

6

2/11/20

4

General Testing Criteria

• Interface integrity
– Communication and collaboration between

components
• Functional validity
– Algorithm implementation

• Information content
– Local or global data

• Performance

N. Meng, B. Ryder 7

7

Testing Strategies

N. Meng, B. Ryder 8

System
engineering

Analysis
modeling

Design modeling
Code

Unit testing
Integration testing

Validation testing

System testing

8

2/11/20

5

Testing Strategies

• We begin by “testing-in-the-small” and
move toward “testing-in-the-large”

• For conventional software
– The module is our initial focus
– Integration of modules follows

• For OO Software
– OO class is our initial focus
– Integration of classes via communication

and collaboration follows

N. Meng, B. Ryder 9

9

Strategy 1: Unit Testing
• Verification on the smallest unit of

software design

N. Meng, B. Ryder
10

N. Meng, B. Ryder

module
to be

tested

test cases

results

software
engineer

10

2/11/20

6

What Are Tested?

• Module interface
– Information properly flows in and out

• Local data structures
– Data stored temporarily maintains its

integrity

N. Meng, B. Ryder 11

11

What Are Tested?

• Boundary conditions
– The module operates properly at

boundaries established to limit or restrict
processing

• Independent paths
– All statements in a module have been

executed at least once
– Including error-handling paths

N. Meng, B. Ryder 12

12

2/11/20

7

Strategy 2: Integration Testing

• To construct tests to uncover errors
associated with interfacing between
units

• Two ways to integrate incrementally
– Top-down integration
– Bottom-up integration

N. Meng, B. Ryder 13

13

Top-Down Integration

N. Meng, B. Ryder 14

top module is tested with stubs

stubs are replaced one at a time, “depth first”

as new modules are integrated,
some subset of tests is re-run

A

B

C

D E

F G

14

2/11/20

8

Bottom-Up Integration

N. Meng, B. Ryder 15

drivers are replaced one at a
time, "depth first"

worker modules are grouped into
builds and integrated

A

B

C

D E

F G

cluster

15

Regression Testing

• As a new module is added in integration
testing, regression testing reruns some
already executed tests to ensure that
software changes do not cause problems
in verified functions.
– i.e, no unintended side effect is caused

N. Meng, B. Ryder 16

16

2/11/20

9

Smoke Testing

• An integration testing approach daily
conducted to test time-critical projects
– “The smoke test should exercise the entire

system from end to end. It does not have
to be exhaustive, but it should be capable
of exposing major problems. The smoke
test should be thorough enough that if the
build passes, you can assume that it is
stable enough to be tested more
thoroughly.”

N. Meng, B. Ryder 17

17

Smoke Testing

• Step 1: Software components already
implemented are integrated into a
“build”
– A build includes all data files, libraries,

reusable modules, and engineered
components that are required to implement
one or more product functions.

N. Meng, B. Ryder 18

18

2/11/20

10

Smoke Testing

• Step 2: Tests are designed to expose
errors that will keep the build from
properly performing its function
– The intent should be to uncover “show

stopper” errors that have the highest
likelihood of throwing the software project
behind schedule.

N. Meng, B. Ryder 19

19

Smoke Testing

• Step 3: The build is integrated with
other builds, and the entire product is
smoke tested daily.
– The integration approach may be top down

or bottom up

N. Meng, B. Ryder 20

20

2/11/20

11

Why Smoke Testing?

• Integration risk is minimized
– Uncover show-stoppers earlier

• The quality of end-product is improved
– Early exposure of defects in design and

implementation
• Error diagnosis and correction are

simplified
– New parts are probably buggy

• Progress is easier to assess

N. Meng, B. Ryder 21

21

OO Testing Strategies

• Integration testing is mapped to
– Thread-based testing
• Integrates the classes required to respond to

one input or event for the system
– Use-based testing
• integrates the classes required to respond to

one use case
– Cluster testing
• integrates the classes required to demonstrate

one collaboration

N. Meng, B. Ryder 22

22

2/11/20

12

Validation Testing

• To check whether software functions as
expected by customers

• To ensure that
– All functional requirements are satisfied
– All behavioral characteristics are achieved
– All performance requirements are attained
– Documentation is correct
– Other requirements are met

N. Meng, B. Ryder 23

23

Alpha and Beta Testing

• Alpha testing
– Acceptance tests by a representative group

of end users at the developer’s site for
weeks or months

• Beta testing
– “Live” applications of the system in an

environment with no developers’ presence

N. Meng, B. Ryder 24

24

2/11/20

13

Alpha Testing

• Why do we need alpha testing?
– It is impossible for a developer to foresee

how customers will really use a program
• How do people conduct alpha testing?
– An informal “test drive” or a planned and

systematically executed series of tests
– Users use the software in a natural setting

with the developers “looking over the
shoulder”

N. Meng, B. Ryder 25

25

Beta Testing

• Why do we need beta testing?
– To uncover errors that only end users seem

able to find
• How do people conduct beta testing?
– The customers use the software at end-

user sites
– Customers record all problems that are

encountered and report them to developers
at regular intervals

N. Meng, B. Ryder 26

26

2/11/20

14

System Testing

• A series of different tests to fully exercise
the computer-based system
– Recovery testing
– Security testing
– Stress testing
– Performance testing
– Deployment testing

• All tests verify that the system is
successfully integrated to a larger system

N. Meng, B. Ryder 27

27

Recovery Testing

• To force the software to fail in a variety
of ways and verify that recovery is
properly performed
– Automatic recovery
• Evaluate whether initialization, check pointing

mechanisms, data recovery, and restart are correct
–Manual recovery
• Evaluate Mean-Time-To-Repair(MTTR) to

determine whether it is acceptable

N. Meng, B. Ryder 28

28

2/11/20

15

Security Testing

• To check whether the security protection
mechanisms will actually protect the
software from improper break through by:
– acquiring passwords through externally
– using hacking software
– browsing/modifying sensitive data
– intentionally causing system crash/errors

N. Meng, B. Ryder 29

29

Security Testing

• Given enough time and resources, good
security testing will ultimately
penetrate a system

• The goal of the system designer is to
make penetration cost higher than the
value of the information that will be
obtained

N. Meng, B. Ryder 30

30

2/11/20

16

Stress Testing

• To execute a system by demanding
resources in abnormal quantity, frequency,
or volume
– “How high can we crank this up before it fails

?”
• Design tests that generate ten interrupts per

second, when one or two is the average rate
• Increase the input data rates by an order of

magnitude to see how input functions will respond
• Design tests that may cause excessive hunting for

disk-resident data

N. Meng, B. Ryder 31

31

Performance Testing

• To test the run-time performance of
software within the context of an
integrated system

• It is usually coupled with stress testing
• It requires both hardware and software

instrumentation to
– measure resource utilization, e.g.,

processor cycles
– monitor execution states

N. Meng, B. Ryder 32

32

2/11/20

17

Deployment (Configuration) Testing

• To ensure the software works in all
different operating systems that it is
to operate
– Execute the software in each environment
– Examine all installation procedures,

installer software, and user documentation

N. Meng, B. Ryder 33

33

When Should We Stop Testing?

• When we detect some pre-defined
number of errors
– Use predictive models for estimation

• Examine number of errors found per
unit of time
– Decide whether to continue based on slope

of graphs
• In reality -- WHEN YOU RUN OUT OF

TIME

N. Meng, B. Ryder 34

34

2/11/20

18

Debugging

• When a test uncovers an error, debugging is
the process to diagnose the root cause and
further remove the error

N. Meng, B. Ryder 35

35

The Debugging Process

N. Meng, B. Ryder 36

36

2/11/20

19

Why Is Debugging So Difficult?

N. Meng, B. Ryder 37

symptom
cause

symptom and cause may be
geographically separated
symptom may disappear when
another problem is fixed
cause may be due to a
combination of non-errors
cause may be due to a system
or compiler error
cause may be due to assumptions
that everyone believes
symptom may be intermittent

37

The Art of Debugging

• Debugging tactics
– Brute force/testing
– Backtracking
– Cause elimination

N. Meng, B. Ryder 38

38

2/11/20

20

Brute Force

• Record as much information as you can
– Take memory dumps, collect runtime

traces, print or log program states
• Pros
– It can work when all other methods fail

• Cons
–Waste effort and time
– Too much information to be useful

N. Meng, B. Ryder 39

39

Backtracking

• Beginning at the site where a symptom has
been uncovered, the source code is traced
backward (manually) until the cause is found

• Pros
– Simple, good for small programs

• Cons
– As the number of source lines increases, the

number of potential backward paths may become
unmanageably large

N. Meng, B. Ryder 40

40

2/11/20

21

Cause Elimination

• Data related to the error occurrence is
organized to isolate potential causes
– A “cause hypothesis” is devised and the

data is used to prove or disprove the
hypothesis

– A list of all possible causes are developed
and tests are conducted to eliminate each

N. Meng, B. Ryder 41

41

