
1/28/20

1

Software Process

1

Overview

• What is software process?
• Examples of process models
• Unified Process (UP)
• Agile software development

N. Meng, B. Ryder 2

2



1/28/20

2

Software Process

• Definition [Pressman]
– a framework for the tasks that are 

required to build high-quality software.
– to provide stability, control and 

organization to an otherwise chaotic 
activity

N. Meng, B. Ryder 3

3

Code-and-Fix Process

• The first thing people tried in the 1950s 
1.Write program
2.Improve it (debug, add functionality, 
improve efficiency, ...) 
3.GOTO 1 

• Works for small 1-person projects and 
for some CS course assignments 

N. Meng, B. Ryder 4

4



1/28/20

3

Problems with Code-and-Fix

• Poor match with user needs 
• Bad overall structure – No blueprint 
• Poor reliability - no systematic testing 
• Maintainability? What’s that? 
• What happens when the programmer 

quits?

N. Meng, B. Ryder 5

5

Code-and-Fix Process

N. Meng, B. Ryder

From McConnell, After the Goldrush, 1999

6

6



1/28/20

4

A More Advanced Process

N. Meng, B. Ryder 7

7

Examples of Process Models

• Waterfall model
• Prototyping model
• Spiral model 
• Incremental model

N. Meng, B. Ryder 8

8



1/28/20

5

Waterfall Model

• The “classic” process model since 1970s
– Also called “software life cycle”

N. Meng, B. Ryder 9

Analysis

Testing & Integration

Maintenance

Design

Implementation

9

Waterfall Phases

• Analysis: Define problems 
– requirements, constraints, goals and domain 

concepts
• Design: Establish solutions
– System architecture, components, relationship

• Implementation: Implement solutions
• Testing and integration: Check solutions
– Unit testing, system testing

• Maintenance: the longest phase

N. Meng, B. Ryder 10

Analysis

Testing & Integration

Maintenance

Design

Implementation

10



1/28/20

6

Key Points of the Model

• The project goes through the phases 
sequentially 

• Possible feedback and iteration across 
phases
– e.g., during coding, a design problem is 

identified and fixed 
• Typically, few or no iterations are used
– e.g., after a certain point of time, the 

design is “frozen”

N. Meng, B. Ryder 11

11

Waterfall Model Assumptions

• All requirements are known at the start and 
stable

• Risks(unknown) can be turned into known 
through schedule-based invention and 
innovation

• The design can be done abstractly and 
speculatively
– i.e., it is possible to correctly guess in advance how 

to make it work 
• Everything will fit together when we start the 

integration

N. Meng, B. Ryder 12

12



1/28/20

7

Pros and Cons

• Pros: widely used, systematic, good for 
projects with well-defined requirements 
– Makes managers happy 

• Cons: 
– The actual process is not so sequential

• A lot of iterations may happen 
– The assumptions usually don’t hold
– Working programs are not available early

• High risk issues are not tackled early enough
– Expensive and time-consuming

N. Meng, B. Ryder 13

13

When would you like to use waterfall?

N. Meng, B. Ryder 14

• Work for big clients enforcing formal 
approach on vendors

• Work on fixed-scope, fixed-price 
contracts without many rapid changes

• Work in an experienced team

14



1/28/20

8

Observation

• Top three reasons for at least partial 
failure projects
– lack of user input
– incomplete requirements, and
– changing requirements

N. Meng, B. Ryder 15

Standish group 1995

15

Prototyping Model

• Build a prototype when customers have 
ambiguous requirements

N. Meng, B. Ryder 16

Analysis

Testing & 
Integration

Maintenance

Design

Implementation

Prototyping
Customer 
Evaluation

Review & 
Update

Customer
satisfied

16



1/28/20

9

Key Points of the Model

• Iterations: customer evaluation followed 
by prototype refinement

• The prototype can be paper-based or 
computer-based

• It models the entire system with real data 
or just a few screens with sample data

• Note: the prototype is thrown away!

N. Meng, B. Ryder 17

17

Pros and Cons

• Pros
– Facilitate communication about requirements
– Easy to change or discard
– Educate future customers

• Cons
– Iterative nature makes it difficult to plan and 

schedule
– Excessive investment in the prototype
– Bad decisions based on prototype

• E.g., bad choice of OS or PL

N. Meng, B. Ryder 18

18



1/28/20

10

When would you like to use prototyping?

N. Meng, B. Ryder 19

• When the desired system has a lot of 
interactions with users

19

Spiral Model

• A risk-driven evolutionary model that combines 
development models (waterfall, prototype, etc.)

20

Spiral model 
(SOM)

20



1/28/20

11

Spiral Phases

• Objective setting
– Define specific objectives, constraints, 

products, plans
– Identify risks and alternative strategies

• Risk assessment and reduction
– Analyze risks and take steps to reduce risks

• Development and validation
– Pick development methods based on risks

• Planning
– Review the project and decide whether to 

continue with a further loop

N. Meng, B. Ryder 21

21

What Is Risk?

• Something that can go wrong
– People, tasks, work products

• Risk management
– risk identification 
– risk analysis 
• the probability of the risk, the effect of the risk

– risk planning 
• various strategies 

– risk monitoring

N. Meng, B. Ryder 22

22



1/28/20

12

Risk Planning [Sommerville]

N. Meng, B. Ryder 23

Risk Strategy
o Recruitment 
problems

o Alert customer of potential difficulties and the 
possibility of delays, investigate buying-in-components

o Defective 
components

o Replace potentially defective components with bought-
in components of known reliability

o Requirements 
changes

o Derive traceability information to assess requirements 
change impact, maximize information hiding in the design

o Organizational 
financial 
problems/restruct
uring

o Prepare a briefing document for senior management 
showing how the project is making a very important 
contribution to the goals of the business

o Underestimated 
development time

o Investigate buying-in components, investigate the use 
of a program generator

23

Key Points of the Model

• Introduce risk management into process
• Develop evolutionary releases to 
– Implement more complete versions of 

software
–Make adjustment for emergent risks

N. Meng, B. Ryder 24

24



1/28/20

13

Pros and Cons

• Pros
– High amount of risk analysis to avoid/reduce risks
– Early release of software, with extra 

functionalities added later
– Maintain step-wise approach with “go-backs” to 

earlier stages
• Cons
– Require risk-assessment expertise for success
– Expensive

N. Meng, B. Ryder 25

25

When to use the model?

N. Meng, B. Ryder 26

• Large and mission-
critical projects

• Medium to high-risk 
projects

• Significant changes are 
expected

26



1/28/20

14

Incremental Model

• A sequential of waterfall models

N. Meng, B. Ryder 27

Analysis

Testing & Integration

Design
Implementation

Iteration n: 3 weeks 
(for example)

Analysis

Testing & Integration

Design
Implementation

Iteration n+1: 3 weeks 
(for example)

Release n Release n + 1

Feedback, adaptation

27

Key Points of the Model

• Iterative: many releases/increments
– First increment: core functionality
– Successive increments: add/fix functionality
– Final increment: the complete product

• Require a complete definition of the whole 
system to break it down and build 
incrementally

N. Meng, B. Ryder 28

28



1/28/20

15

Pros and Cons

• Pros
– Early discovery of software defects
– Early delivery of working software
– Less cost to change/identify requirements

• Cons
– Constant changes (“feature creep”) may 

erode system architecture

N. Meng, B. Ryder 29

29

When to use the model?

N. Meng, B. Ryder 30

• The requirements of the complete 
system are clear

• Major requirements must be defined 
while some details can evolve over time

• Need to get a product to the market 
early 

30



1/28/20

16

Spiral model vs. incremental model

• Iterative models
–Most projects build 

software iteratively
• Risk-driven vs. 

client-driven

N. Meng, B. Ryder 31

31

Unified Process (UP)

• An example of iterative process for 
building object-oriented systems
– Very popular in the last few years
– By the same folks who develop UML

• It provides a context for our discussion 
of analysis and design

N. Meng, B. Ryder 32

32



1/28/20

17

Phases in UP

N. Meng, B. Ryder 33

Inception Elaboration Construction Transition

• Inception: preliminary investigation
• Elaboration: analysis, design, and some coding
• Construction: more coding and testing
• Transition: beta tests and development
• Each phase may be enacted in an iterative 

way, and the whole set of phases may be 
enacted incrementally

33

Iteration Length

• Iteration should be short (2-6 weeks)
– Small steps, rapid feedback and adaptation
– Massive teams with lots of communication – but no 

more than 6 months 
• Iterations should be timeboxed (fixed length)
– Integrate, test and deliver the system by a 

scheduled date
– If not possible: move tasks to the next iteration 

N. Meng, B. Ryder 34

34



1/28/20

18

Reasons for Timeboxing

• Improve programmer productivity with 
deadlines

• Encourage prioritization and decisiveness
• Team satisfaction and confidence
–Quick and repeating sense of completion, 

competency, and closure 
– Increase confidence for customers and 

managers 

N. Meng, B. Ryder 35

35

UP Disciplines

• Discipline: an activity and related 
artifact(s)

• Artifact: any kind of work product
– Requirement modeling
• requirement analysis + use-case models, domain 

models, and specs.
– Design
• design + design models

– Implementation
• code

N. Meng, B. Ryder 36

36



1/28/20

19

Agile Software Development

• A timeboxed iterative and evolutionary 
development process

• It promotes
– adaptive planning
– evolutionary development, 
– incremental delivery
– rapid and flexible response to change

N. Meng, B. Ryder 37

Any iterative method, including the UP, can be 
applied in an agile spirit.

37

The Agile Manifesto

• We are uncovering better ways of 
developing software by doing it and helping 
others do it. Through this work we have 
come to value:
– Individuals and interactions over Processes 

and tools
– Working software over Comprehensive 

documentation
– Customer collaboration over Contract 

negotiation
– Responding to change over Following a plan

N. Meng, B. Ryder 38

Kent Beck et al. 2001

38



1/28/20

20

Key Points of Agile Modeling

• The purpose of modeling is primarily to 
understand, not to document

• Modeling should focus on the smaller 
percentage of unusual, difficult, and tricky 
parts of the design space

• Model in pairs (or triads)
• Developers should do the OO design modeling 

for themselves
• Create models in parallel
– E.g., interaction diagram & static-view class diagram

N. Meng, B. Ryder 39

39

Models are inaccurate

• Only tested code demonstrates the true 
design

• Treat diagrams as throw-away 
explorations

• Use the simplest tool possible to 
facilitate creative thinking
– E.g., sketching UML on whiteboards 

• Use “good enough” simple notation

N. Meng, B. Ryder 40

40



1/28/20

21

Agile Methods

• Agile Unified Process (Agile UP)
• Dynamic systems development method 

(DSDM)
• Extreme programming (XP)
• Feature-driven development (FDD)
• Scrum

N. Meng, B. Ryder 41

41

Agile UP

• Keep it simple
– Prefer a small set of UP activities and artifacts
– Avoid creating artifacts unless necessary

• Planning
– For the entire project, there is only a high-level 

plan (Phase Plan), to estimate the project end 
date and other major milestones

– For each iteration, there is a detailed plan 
(Iteration plan) created one iteration in advance

N. Meng, B. Ryder 42

42



1/28/20

22

Pros and Cons

• Pros
– Customer satisfaction by rapid, continuous 

delivery of useful software
– Close, daily cooperation between business people 

and developers
– Better software quality and lower cost

• Cons
– People may lose sight of the big picture
– Heavy client participation is required
– Poor documentation support for training of new 

clients/programmers
N. Meng, B. Ryder 43

43

When to use agile methods?

• Changing 
requirements

• Faster time to 
market and 
increased 
productivity

• Frequently used in 
start-up companies

N. Meng, B. Ryder 44

44


