
4/9/20	

1	

Fine-grained and Accurate
Source Code Differencing

Problem Statement

•  Existing approaches usually represent
code changes or edit operations as line
addition or deletion

•  Such representations are not precise
– E.g., code move or update is not properly

represented

2	

4/9/20	

2	

Contributions

•  GumTree—a novel efficient AST
differencing algorithm that includes
move actions

•  An automated evaluation of GumTree
•  A manual evaluation to compare

GumTree vs. textual diff
•  An automated evaluation to compare

GumTree vs. ?

3	

The GumTree Algorithm

4	

•  1. A greedy top-down algorithm to find
isomorphic sub-trees of decreasing
height. Mappings are established
between the nodes of these isomorphic
subtrees. They are called anchors
mappings.

4/9/20	

3	

The GumTree Algorithm (cont’d)

•  2. A bottom-up algorithm where two
nodes match (called a container
mapping) if their descendants (children
of the nodes, and their children, and so
on) include a large number of common
anchors. When two nodes match, we
finally apply an optimal algorithm to
search for additional mappings (called
recovery mappings) among their
descendants.

5	

The GumTree Algorithm (cont’d)

•  3. Recovery Mappings: to find additional
mappings between leaf nodes and similar
nodes

•  4. Generate edit operations for the
unmatched nodes:
– Insert
– Delete
– Update
– Move

6	

4/9/20	

4	

7	

Top-Down Phase

•  Start with the roots and check if they
are isomorphic or identical. If not, the
children nodes are then tested

•  To identify the unchanged part
•  Implementation
– By hardcoding subtrees, the isomorphism

test’s complexity is O(1)
– The worst-case complexity is O(n^2)

8	

4/9/20	

5	

Bottom-Up Phase

•  Search for container mappings, that are
established when two nodes have a
significant number of matching
descendants

9	

Recovery Mappings

•  Given two trees, find their additional
mappings between the descendants,
– remove the matched descendants, and
– apply an optimized algorithm to find a

shortest edit script without move actions

10	

4/9/20	

6	

Architecture

11	

– Parser: Java, JavaScript, R, and C
– Mappings: GumTree, ChangeDistiller, XYDiff, RTED
– Output: XML representation of AST, web-based view

of an edit script, XML representation of an edit
script

Evaluation
•  Comparison between

GumTree, textual
diff, and RTED
– The median of

parsing time is 10
– Computing an edit

script is only slightly
slower than just
parsing the files
(median at 18 for
Jenkins and 30 for
JQuery

12	

4/9/20	

7	

Manual Evaluation

13	

•  GumTree’s output is sometimes better than
textual diff

Automatic Evaluation

14	

•  More
matches =
better

4/9/20	

8	

Automatic Evaluation (cont’d)

•  GumTree generates smaller edit scripts
in most cases than RTED and
ChangeDistiller
– 130 elements include move-only actions

15	

