
3/25/20

1

Program Dynamic Analysis

1

Overview

• Dynamic Analysis
• JVM & Java Bytecode [2]
• A Java bytecode engineering library:

ASM [1]

2

2

3/25/20

2

What is dynamic analysis? [3]

• The investigation of the properties of a
running software system over one or
more executions

3

3

Has anyone done dynamic analysis? [3]

• Loggers
• Debuggers
• Profilers
• …

4

4

3/25/20

3

Why dynamic analysis? [3]

• Gap between run-time structure and
code structure in OO programs

5

Trying to understand one [execution] from the other is like trying to
understand the dynamism of living ecosystems from the static taxonomy of
plants and animals, and vice-versa.

-- Erich Gamma et al., Design Patterns

5

Why dynamic analysis?

• Collect runtime execution information
– Resource usage, execution profiles

• Program comprehension
– Find bugs in applications, identify hotspots

• Program transformation
– Optimize or obfuscate programs
– Insert debugging or monitoring code
– Modify program behaviors on the fly

6

6

3/25/20

4

How to do dynamic analysis?

• Instrumentation
– Modify code or runtime to monitor specific

components in a system and collect data
– Instrumentation approaches

• Source code modification
• Byte code modification
• VM modification

• Data analysis

7

7

A Running Example

• Method call instrumentation
– Given a program’s source code, how do you

modify the code to record which method is
called by main() in what order?

8

public class Test {
public static void main(String[] args) {

if (args.length == 0) return;
if (args.length % 2 == 0) printEven();
else printOdd();

}
public static void printEven() {System.out.println(“Even”);}
public static void printOdd() {System.out.println(“Odd”);}

}

8

3/25/20

5

Source Code Instrumentation

• Call site instrumentation
– Call print(…) before each actual method call

• Method entry instrumentation
– Call print(…) at entry of each method

9

9

Method Entry Instrumentation
public class Test {

public static void main(String[] args) {
if (args.length == 0) return;
if (args.length % 2 == 0) printEven();
else printOdd();

}
public static void printEven() {

System.out.println(“printEven() is called”);
System.out.println(“Even”);

}
public static void printOdd() {

System.out.println(“printOdd() is called”);
System.out.println(“Odd”);

}
} 10

10

3/25/20

6

Call Site Instrumentation

11

public class Test {
public static void main(String[] args) {

if (args.length == 0) return;
if (args.length % 2 == 0) {

System.out.println(“printEven() is called”);
printEven();

} else {
System.out.println(“printOdd() is called”);
printOdd();

}
}
public static void printEven() {System.out.println(“Even”);}
public static void printOdd() {System.out.println(“Odd”);}

}

11

Method entry vs. Call site

12

12

3/25/20

7

Can you do instrumentation
automatically?

13

13

People also do byte code
instrumentation, because

• Source code is not needed, so
transformations can be used on
applications with closed source and
commercial applications

• Code can be weaved in at runtime
transparently to users

• Why source code?

14

14

3/25/20

8

Tools for Program Analysis and
Transformation

• ASM
– Class generation and transformation based

on byte code
• Soot

– Program analysis and transformation
framework based on byte code

• WALA
– Program analysis and transformation

framework based on source code of Java
and Javascript, and byte code of Java

15

15

Java Virtual Machine (JVM)

• A “virtual” computer that resides in the
“real” computer as a software process

• Java byte code is the instruction set of
the JVM

• It gives Java the flexibility of platform
independence

16

16

3/25/20

9

JVM[4]

17

17

JVM Architecture[5]

18

18

3/25/20

10

Java Stack

• JVM is a stack-based machine
– Each thread has a JVM stack which stores

frames
– A frame is created each time a method is

invoked, including
• an operand stack,
• an array of local variables, and
• a reference to the runtime constant pool

– Operations are carried out by popping data
from the stack, processing them, and pushing
back the results

19

19

Frame Structure

20

20

3/25/20

11

Method Area

• This is the area where byte code resides
• The program counter (PC) points to some

byte in the method area
• It always keeps tracks of the current

instruction which is being executed
(interpreted)

• After execution of an instruction, the
JVM sets the PC to next instruction

• Method area is shared among all threads
of the process

21

21

Garbage-collected Heap

• It is where the objects in Java
programs are stored

• Java does not have free operator to
free any previously allocated memory

• Java frees useless memory using
Garbage collection mechanism

22

22

3/25/20

12

Execution Engine

• Execute byte code directly or indirectly
– Interpreter

• Interpret/read the code and execute
accordingly

• Start fast without compilation
– Just-in-time (JIT) compilers

• Translate to machine code and then execute
• Start slow due to compilation

23

23

Execution Engine

• Adaptive optimization
– Performs dynamic recompilation of portions

of a program based on the current
execution profile

– Make a trade-off between just-in-time
compilation and instruction interpretation

• E.g., method inlining

24

24

3/25/20

13

Java Byte Code

• Each instruction consists of a one-byte
opcode followed by zero or more
operands
– "iadd”: receives two integers as operands

and adds them together.

25

25

Seven Types of Instructions

1. Load and store
– aload_0, istore

2. Arithmetic and logic
– ladd, fcmpl

3. Type conversion
– i2b, d2i

4. Object creation and manipulation
– new, putfield

26

26

3/25/20

14

Seven Types of Instructions

5. Operand stack management
– swap, dup2

6. Control transfer
– ifeq, goto

7. Method invocation and return
– invokespecial, areturn

27

27

Example: iadd

28

28

3/25/20

15

Instrumentation in byte code

• System.out.println(“printEven() is called”)

29

getstatic #16 //Field java/lang/System/out:Ljava/io/PrintStream;
ldc #22 //Load String “printEven() is called”
invokevirtual #24 //Method java/io/PrintStream.println: (Ljava/lang/

String;)V

29

How to manipulate byte code with
ASM?

• Using ClassReader to read from a class
file

• Using ClassWriter to write to a class
file

• Put new declared ClassVisitor(s)
between them to rewrite bytecode as
needed

30

30

3/25/20

16

Interface ClassVisitor

• A visitor to visit a Java class
• The visit methods are invoked in the

following order:
– visit [visitSource] [visitOuterClass] (

visitAnnotation | visitAttribute)*
(visitInnerClass | visitField | visitMethod)*
visitEnd.

31

31

Interface MethodVisitor

• A visitor to visit a Java method
• The visit methods are invoked in the

following order:
– [visitAnnotationDefault] (visitAnnotation

| visitParameterAnnotation | visitAttribute
)* [visitCode (visitXInsn | visitLabel |
visitTryCatchBlock | visitLocalVariable |
visitLineNumber)* visitMaxs] visitEnd.

32

32

3/25/20

17

Class File Instrumentation
public class Instrumenter {

public static void main(final String args[]) throws Exception {
FileInputStream is = new FileInputStream(args[0]);
byte[] b;
ClassReader cr = new ClassReader(is);
ClassWriter cw = new

ClassWriter(ClassWriter.COMPUTE_FRAMES);
ClassVisitor cv = new ClassAdapter(cw);
cr.accept(cv, 0);
b = cw.toByteArray();
FileOutputStream fos = new FileOutputStream(args[1]);
fos.write(b);
fos.close();

}
} 33

33

Class Rewriting

34

class ClassAdapter extends ClassVisitor implements Opcodes {

public ClassAdapter(final ClassVisitor cv) {
super(ASM5, cv);

}

@Override
public MethodVisitor visitMethod(final int access, final String name,

final String desc, final String signature, final String[] exceptions) {
MethodVisitor mv = cv.visitMethod(access, name, desc, signature,

exceptions);
return mv == null? null: new MethodAdapter(mv, name);

}
}

34

3/25/20

18

Method Rewriting – Method Entry
class MethodAdapter extends MethodVisitor implements Opcodes {

String name;
public MethodAdapter(final MethodVisitor mv, String name) {

super(ASM5, mv);
this.name = name;

}
@Override
public void visitCode() {

mv.visitFieldInsn(GETSTATIC, "java/lang/System", "out",
"Ljava/io/PrintStream;");

mv.visitLdcInsn(name + " is called");
mv.visitMethodInsn(INVOKEVIRTUAL,

"java/io/PrintStream", "println", "(Ljava/lang/String;)V", false);
mv.visitCode();

}
}

35

35

Method Rewriting - CallSite
@Override
public void visitMethodInsn(int opcode, String owner, String name,
String desc, boolean itf) {

mv.visitFieldInsn(GETSTATIC, "java/lang/System", "err",
"Ljava/io/PrintStream;");

mv.visitLdcInsn(name + " is called");
mv.visitMethodInsn(INVOKEVIRTUAL, "java/io/PrintStream",

"println", "(Ljava/lang/String;)V", false);
mv.visitMethodInsn(opcode, owner, name, desc, itf);

}

36

36

3/25/20

19

With a method call trace, we can create

• Call graph
– Each method corresponds to a node
– No context sensitivity

• Call tree
– Context sensitivity

• Calling context tree
– Collapse nodes with same hierarchical

context

37

37

With instrumentation, we can collect
more information…

• Execution path
• Statement coverage
• Method input/output values
• Read/write access of variables

38

38

3/25/20

20

Reference
[1] Eric Bruneton, ASM 4.0
A Java bytecode engineering library,
http://download.forge.objectweb.org/asm/asm4-
guide.pdf
[2] Instrumenting Java Bytecode with ASM,
http://web.cs.ucla.edu/~msb/cs239-tutorial/
[3] Orla Greevy & Adrian Lienhard, Analyzing Dynamic
Behaviorhttps://www.iam.unibe.ch/scg/svn_repos/Lectur
es/OORPT/12DynamicAnalysis.ppt .
[4] Viral Patel, Java Virtual Machine, An inside story!!,
http://viralpatel.net/blogs/java-virtual-machine-an-
inside-story/
[5] Bill Venners, The Java Virtual Machine,
http://www.artima.com/insidejvm/ed2/jvm2.html

39

39

http://download.forge.objectweb.org/asm/asm4-guide.pdf
http://web.cs.ucla.edu/~msb/cs239-tutorial/
https://www.iam.unibe.ch/scg/svn_repos/Lectures/OORPT/12DynamicAnalysis.ppt
http://viralpatel.net/blogs/java-virtual-machine-an-inside-story/

