
3/16/20

1

Program Representations

1

Overview

• Abstract Syntax Tree
– Eclipse JDT
– Java Model
– Eclipse JDT AST

• Control Flow Graph
• Program Dependence Graph
• Points-to Graph
• Call Graph

2

2

3/16/20

2

Abstract Syntax Tree (AST)

• Created by the compiler at the end of
syntax analysis phase

• A tree representation for the abstract
syntactic structure of source code
– Node: construct, such as statement and loop
– Edge: containment relationship

• Different compilers can define different
AST representations

3

3

Eclipse JDT

• The Eclipse Java Development Tools
project (JDT) provides
– tools to develop Java application
– APIs to access, create, and manipulate Java

projects’ source code
• It provides access to Java source code

via two ways: Java Model and Abstract
Syntax Tree

4

4

3/16/20

3

Java Model

• It is defined in the org.eclipse.jdt.core
plug-in

• Each Java project is internally
represented in Eclipse as a Java model

• It has a tree structure to represent
hierarchical components in a Java project

5

5

The Tree Structure of Java Project[2]

6

6

3/16/20

4

How do we use Java Model?

• Programmatically parse information
from Java Projects

• Create new Java elements
• Automatically manipulate Java source

code

7

7

Programmatically Parse Information

8

8

3/16/20

5

Create New Java Elements

9

9

Why is Java Model important?

• The basis for quick fix and code generation
feature in Eclipse
– generate equals() and hashcode()
– declare a new class to resolve unresolved type

reference
• APIs support structure change, but not

statement
• Enabler for automatic programming!

10

10

3/16/20

6

Eclipse
AST[3]

11

11

How do we generate Eclipse AST
from source code?

12

12

3/16/20

7

How do we use Eclipse AST?

• Use ASTVisitor to parse any source
code information from the AST

• Conduct program analysis based on the
AST information

• Manipulate AST to insert/delete code

13

13

Parse Information
• To get information about AST, you only

need to declare a visitor which extends
ASTVisitor to define how to visit each
AST element

14

14

3/16/20

8

AST Manipulation[2]

• Two ways to manipulate AST:
– Directly modifying the AST
– Noting the modifications in a separate

protocol, which is handled by ASTRewrite

15

15

Why is AST important?

• Makes it possible to apply all kinds of syntax-
directed translation/transformation

• Combined with Java model, enable automatic
programming

• When mining software repository to
understand program changes, program
analysis based on AST is the key to automate
the process

16

16

3/16/20

9

Control Flow Graph (CFG)

• A representation, using graph notation,
of all paths that might be traversed
through a program during its execution

17

17

Formal Representation[5]

• CFG = <V, E, Entry, Exit>, where
– V = vertices or nodes, representing an

instruction or basic block (a group of
instructions)

– E = edges, potential flow of control,

– , unique program entry

– , unique program exit

E ⊆V ×V
Entry ∈V
(∀v ∈V)[Entry *#→# v]
Exit ∈V
(∀v ∈V)[v *#→# Exit] 18

18

3/16/20

10

Basic Block

• A maximal sequence of consecutive
instructions such that inside the basic
block, an execution can only proceed
from one instruction to the next

• Single entry, single exit

19

19

CFG Example
1 A = 4
2 t1 = A * B

3 L1: t2 = t1/C
4 if t2 < W goto L2

5 M = t1 * k
6 t3 = M + I

7 L2: H = I
8 M = t3 – H
9 if t3 >= 0 goto L3

10 goto L1

11 L3: halt

• What are the basic
blocks?

• What are the edges
between them?

20

20

3/16/20

11

CFG Example

entry

BB1: 1-2

BB2: 3-4

BB3: 5-6

BB4: 7-9

BB5: 10 BB6: 11

exit

21

21

Why is CFG important?

• A lot of program analysis and abstract
representations are built based on it

• In testing scenario, CFG is leveraged to
design test cases in order to have
enough path/statement coverage

22

22

3/16/20

12

CFG Used for Selective Testing

• Basic Path Testing
– Cyclomatic complexity V(G)
• number of simple decisions + 1
• number of enclosed areas + 1

–What are the paths to test?

entry

BB1: 1-2

BB2: 3-4

BB3: 5-6

BB4: 7-9

BB5: 10 BB6: 11

exit

23

23

Program Dependence Graph (PDG)

• A directed graph representing
dependencies among code
– Control dependence
• A control depends on B if B’s execution decides

whether or not A is executed
– Data dependence
• A data depends on B if A uses variable defined

in B

24

24

3/16/20

13

Control Dependence Example

• BB3 control depends on BB2
because whether or not BB3 is
executed depends on the
branch taken at BB2
– Every block control depends on

entry block
– In most cases, statements control

depend on their AST container
constructs, such as loop, switch,
if. Can you think about cases
violating this observation?

entry

BB1: 1-2

BB2: 3-4

BB3: 5-6

BB4: 7-9

BB5: 10 BB6: 11

exit
25

25

Data Dependence Example
entry

1. …
2. t1 = …

3. t2 = t1/C
4. if t2 < W …

BB3: 5-6

BB4: 7-9

BB5: 10 BB6: 11

exit

• BB2 data depends on BB1
because BB2 uses the variable
t1, whose value is defined by
instruction(s) in BB1
–Which statement does

“sum = sum + i” data depend on?
sum = 0;
i = 1;
while (i < N) {

i = i + 1;
sum = sum + i;

}
26

26

3/16/20

14

PDG

• A PDG contains both control
dependence edges and data
dependence edges

entry

1. …
2. t1 = …

3. L1: t2 = t1/C
4. if t2 < W goto L2

5. M = t1 * k
6. t3 = M + I

7. L2: H = I
8. M = t3 – H
9. if t3 >=0 goto L3

10. goto L1 11. L3: halt

exit
Direct control dependence edge
Direct data dependence edge

27

27

Why is PDG important?

• It demonstrates some program
semantics and facilitates program
comprehension
– find bugs, program slicing

• Guide safe program
transformations/optimizations which
modify code without compromising
dependency relations
– Automatic parallelism, common sub-

expression elimination, code motion
28

28

3/16/20

15

Program Slicing

• Set of statements that may affect the
values at some point of interest
– data/control dependence relationship

• Backward slicing
– The statements the current value is

dependent on
• Forward slicing
– The statements which depend on the

current value

29

29

Example

• t3 at instruction 6:
– Backward slicing?
– Forward slicing?

entry

1. A = 4
2. t1 = …

3. L1: t2 = t1/C
4. if t2 < W goto L2

5. M = t1 * k
6. t3 = M + I

7. L2: H = I
8. M = t3 – H
9. if t3 >=0 goto L3

exit

10. goto L1 11. L3: halt

30

30

3/16/20

16

Points-to Graph

• For a program location, for any object
reference/pointer, calculate all the
possible objects/variables it may/must
refer/point to
r = new C();
p.f = r;
t = new C();
if (…)

q=p;
r->f = t;

r

31

31

Points-to Graph

• For a program location, for any object
reference/pointer, calculate all the
possible objects/variables it may/must
refer/point to
r = new C();
p.f = r;
t = new C();
if (…)

q=p;
r->f = t;

r
p f

32

32

3/16/20

17

Points-to Graph[4]

• For a program location, for any object
reference/pointer, calculate all the
possible objects/variables it may/must
refer/point to
r = new C();
p.f = r;
t = new C();
if (…)

q=p;
r->f = t;

r
p f

t

33

33

Points-to Graph

• For a program location, for any object
reference/pointer, calculate all the
possible objects/variables it may/must
refer/point to
r = new C();
p.f = r;
t = new C();
if (…)

q=p;
r.f = t;

r
p f

t
q

34

34

3/16/20

18

Points-to Graph

• For a program location, for any object
reference/pointer, calculate all the
possible objects/variables it may/must
refer/point to
r = new C();
p.f = r;
t = new C();
if (…)

q=p;
r->f = t;

r
p f

t
q

f

p.f.f and t are aliases
35

35

Why is Points-to Graph important?

• Connect together analyzed program
semantics for individual methods
– Essential to expand intra-procedural

analysis to inter-procedural
• Detect consistent usage of resources
– File open/close, lock/unlock, malloc/free

• Garbage collection

36

36

3/16/20

19

Call Graph

• A directed graph representing caller-
callee relationship between
methods/functions
– Node: methods/functions
– Edges: calls

37

37

Why is Call Graph important?

• Facilitate program comprehension and
optimization
–When a program crashes, what is the

possible calling context?
– Detect anomalies of program execution

38

38

3/16/20

20

Reference
[1] Lars Vogel, Eclipse JDT - Abstract Syntax Tree (AST)
and the Java Model – Tutorial,
http://www.vogella.com/tutorials/EclipseJDT/article.html,
[2] Thomas Kuhn, Eye Media GmbH, Olivier Thomann,
Abstract Syntax Tree,
https://www.eclipse.org/articles/article.php?file=Article-
JavaCodeManipulation_AST/index.html
[3] YAAT – Yet another AST tutorial,
http://sahits.ch/blog/blog/2008/05/23/yaat-yet-another-
ast-tutorial/
[4] Xiangyu Zhang, Program
Representations, https://www.cs.purdue.edu/homes/xyzhang
/fall07/
590Z-pr-slicing.ppt .
[5] Kathryn S. McKinley, Program Representations,
http://www.cs.utexas.edu/users/mckinley/380C/lecs/02.pdf

39

39

https://www.eclipse.org/articles/article.php%3Ffile=Article-JavaCodeManipulation_AST/index.html
http://sahits.ch/blog/blog/2008/05/23/yaat-yet-another-ast-tutorial/
https://www.cs.purdue.edu/homes/xyzhang/fall07/590Z-pr-slicing.ppt
https://www.cs.purdue.edu/homes/xyzhang/fall07/590Z-pr-slicing.ppt

