
Secure Coding Practices in Java: Challenges and Vulnerabilities
Na Meng Stefan Nagy Daphne Yao Wenjie Zhuang Gustavo Arango Argoty

Virginia Tech
Blacksburg, Virginia 24060

{nm8247,snagy2,danfeng,kaito,gustavo1}@vt.edu

ABSTRACT
Java platform and third-party libraries provide functionalities to fa-
cilitate secure coding. However, misusing these functionalities can
cost developers tremendous time and effort, or introduce security
vulnerabilities in software. Prior research focused on the misuse of
cryptography and SSL APIs, but did not explore the fundamental re-
search question: what are the biggest challenges and vulnerabilities
in secure coding practices? In this paper, we conducted a broader
empirical study on StackOverflow posts to understand developers’
concerns on Java secure coding, their programming obstacles, and
the potential vulnerabilities in their code.

We observed that developers have shifted their effort to the usage
of authentication and authorization features provided by Spring
Security—a third-party framework designed to secure enterprise
applications. The programming challenges are all related to APIs or
libraries, including the complicated cross-language data handling
of cryptography APIs, and the complex Java-based or XML-based
approaches to configure Spring Security. More interestingly, we
identified security vulnerabilities in the suggested code of accepted
answers. The vulnerabilities included using insecure hash functions
(e.g., MD5), breaking SSL/TLS security through bypassing certificate
validation, and insecurely disabling the default protection against
Cross Site Request Forgery attacks. Our findings reveal the insuffi-
ciency of secure coding assistance and documentation, as well as
the gap between security theory and coding practices.

CCS CONCEPTS
• General and reference→ Empirical studies;

KEYWORDS
CSRF, SSL/TLS certificate validation, cryptographic hash functions,
authentication, authorization, StackOverflow posts

ACM Reference format:
Na Meng Stefan Nagy Daphne Yao Wenjie Zhuang Gustavo
Arango Argoty. 2018. Secure Coding Practices in Java: Challenges and
Vulnerabilities. In Proceedings of ACM conference, Gothenburg, Sweden, May
2018 (ICSE’18), 13 pages.
https://doi.org/10.475/123_4

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE’18, May 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.475/123_4

1 INTRODUCTION
Java platform and third-party libraries or frameworks (e.g., Boun-
cyCastle [6]) provide various features to enable secure coding. Mis-
using these libraries and frameworks not only slows development
time, but also leads to security vulnerabilities in the resulting soft-
ware [14, 98, 99, 103].

Prior research mainly focused on cryptography and SSL API
misuse causing security vulnerabilities [80, 82, 85, 88]. Specifically,
Lazar et al. manually examined 269 published cryptographic vul-
nerabilities in the CVE database, and observed 83% of them resulted
from cryptography API misuse [88]. Nadi et al. further investigated
the obstacles introduced by Java cryptography APIs, developers’
usage of the APIs, and desired tool support [94]. Fahl et al. [82] and
Georgiev et al. [85] separately implemented a man-in-the-middle
attack, and detected vulnerable Android applications and software
libraries misusing SSL APIs. Despite these studies, it is still un-
known what the major concerns are in secure coding practices,
and whether these practices benefitted from security research over
time.

In this paper, we conducted a broader in-depth investigation on
the common concerns, programming challenges, and security vul-
nerabilities in developers’ secure coding practices by inspecting 503
StackOverflow (SO) posts related to Java security. We chose SO [63]
because (1) it is a popular online platform for developers to share
and discuss programming issues and solutions, and (2) SO plays
an important role in educating developers and shaping their daily
coding practices. The main challenge of conducting this empirical
study is interpreting security-relevant programming issues or solu-
tions within both program and security contexts. To comprehend
each post within the program context, we manually checked all
included information related to the source code, configuration files,
and/or execution environments. Then, we identified the root causes
and solutions of each problem. To comprehend each post within the
security context, we collected information about the developers’
implementation intents and the involved security libraries, and
determined whether the final implementation fulfilled the intents.
Such manual analysis requires so much expertise in both software
engineering and security that it is difficult to automate.

In our thoroughmanual analysis of the 503 posts, we investigated
the following three research questions (RQs):

RQ1 What are the common concerns in Java secure coding? Al-
though there are various security libraries and frameworks [2,
32, 34, 57, 86, 95], we do not know which libraries and func-
tionalities are most frequently asked about by developers.

RQ2 What are the common programming challenges? We aim to
identify the common obstacles preventing developers from
easily and correctly implementing secure code. Such infor-
mation will provide SE researchers actionable knowledge to

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

ICSE’18, May 2018, Gothenburg, Sweden Na Meng Stefan Nagy Daphne Yao Wenjie Zhuang Gustavo Arango Argoty

better develop tools, and help close the gap between intended
versus actual library usage.

RQ3 What are the common security vulnerabilities? We aim to
identify security the vulnerabilities spread on SO, since their
gaining popularity may cause insecure code to see wide-
spread implementation. This effort will help raise security
consciousness among software developers.

In our study, we made three major observations.
• There were security vulnerabilities in the recommended code
of some accepted answers. For example, usage of MD5 or
SHA-1 algorithms was repeatedly suggested, although these
algorithms are notoriously insecure and should not be used.
Additionally, many developers were advised to trust all in-
coming SSL/TLS certificates as a temporary fix to certificate
verification errors. Such action completely disrupts the secu-
rity of SSL. Although this bad practice was initially reported
by researchers in 2012 [82, 85], developers have still asked
for and accepted it until now. Furthermore, when encounter-
ing errors in implementing Spring Security authentication,
developers were often suggested a workaround to blindly
disable the default security protection against Cross Site
Request Forgery (CSRF) attacks.
• Various programming challenges were related to security li-
brary usage. For instance, developers became stuck using
cryptography APIs due to clueless error messages, complex
cross-language data handling, and delicate implicit API usage
constraints. However, when using Spring Security, develop-
ers struggled with the two alternative ways of configuring
security: Java-based or XML-based.
• Since 2012, developers have increasingly relied on Spring Se-
curity for secure coding. 267 of the 503 examined posts (53%)
were about Spring Security. However, to the best of our
knowledge, research has not yet investigated security vul-
nerabilities related to this framework.

The significance of this work is our empirical evidence for many
significant secure coding issues which have not been previously re-
ported on. Compared with OWASP [47] and prior studies (e.g., Nadi
et al. [94] and Acar et al. [73]), our research analyzed developers’
code to reveal both implementation obstacles and security vulnera-
bilities. We further investigated the posts’ discussion content, and
leveraged our security expertise to assess the potential vulnerabili-
ties disseminated. Our findings will motivate new research to help
developers overcome the observed issues in the long term.

2 BACKGROUND
The examined posts were mainly about three perspectives of Java
security: Java platform security, Java EE security, and other third-
party frameworks. This section introduces the key terminologies
used throughout the paper.

2.1 Java Platform Security
The platform defines APIs spanning major security areas, including
cryptography, access control, and secure communication [41].

The Java Cryptography Architecture (JCA) contains APIs for
hashes, keys and certificates, digital signatures, and encryp-
tion [34]. Nine cryptographic engines are defined to provide either

cryptographic operations (encryption, digital signatures, hashes),
generators or converters of cryptographic material (keys and algo-
rithm parameters), or objects (keystores or certificates) that encap-
sulate the cryptographic data.

The access control architecture protects the access to sensitive re-
sources (e.g., local files) or sensitive application code (e.g., methods
in a class). All access control decisions are mediated by a security
manager. By default, the securitymanager uses the AccessController
class for access control operations and decisions.

Secure communication ensures that the data which travels across
a network is sent to the appropriate party, without being modified
during the transmission. Cryptography forms the basis for secure
communication. The Java platform provides API support for stan-
dard secure communication protocols like SSL/TLS. HTTPS, or
“HTTP secure”, is an application-specific implementation that is a
combination of HTTP and SSL/TLS.

2.2 Java EE Security
Java EE is an standard specification for enterprise Java extensions [44].
Various application servers are built to implement this specification,
such as JBoss or WildFly [71], Glassfish [18], WebSphere [69],
andWebLogic [3]. A Java EE application consists of components
deployed into various containers. The Java EE security specification
defines that containers secure components by supporting features
like authentication and authorization.

In particular, authentication defines how communicating en-
tities, such as a client and a server, prove to each other that they
are who they say they are. An authenticated user is issued a creden-
tial, which includes user information like usernames/passwords or
tokens. Authorization ensures that users have permissions to per-
form operations or access data. When accessing a certain resource,
a user is authorized if the server can map this user to a security
role permitted for the resource.

Java EE applications’ security can be implemented in two ways:
• Declarative Security expresses an application component’s
security requirements using either deployment descrip-
tors or annotations. A deployment descriptor is an XML
file external to the application. This XML file expresses an
application’s security structure, including security roles, ac-
cess control, and authentication requirements. Annotations
are used to specify security information in a class file. They
can be either used or overridden by deployment descriptors.
• Programmatic Security is embedded in an application and
is used to make security decisions, when declarative security
alone is not sufficient to express the security model.

2.3 Other Third-Party Security Frameworks
Several frameworks were built to provide authentication, authoriza-
tion, and other security features for enterprise applications, such as
Spring Security (SS) [54]. Different from the Java EE security APIs,
these frameworks are container independent, meaning that they
do not require containers to implement security. For example, SS
handles requests as a single filter inside a container’s filter chain.
There can be multiple security filters inside the SS filter. Devel-
opers can choose between XML-based and Java-based security
configurations, or a hybrid of the two. Similar to Java EE security,

Secure Coding Practices in Java: Challenges and Vulnerabilities ICSE’18, May 2018, Gothenburg, Sweden

the XML-based configuration implements security requirements
with deployment descriptors and source code, while the Java-based
expresses security with annotations and code.

3 METHODOLOGY
We leveraged the open source python library Scrapy [51] to crawl
posts from the StackOverflow (SO) website. Figure 1 presents the
format of a typical SO post. Each post mainly contains two regions:
the question and answers.

1⃝Question region contains the question description and some
metadata. The metadata includes a vote for the question (e.g., 3), in-
dicating whether the question is well-defined or well-representative,
and a favorite count (e.g., 1) showing how many people liked the
question.

2⃝ Answer region contains all answer(s) provided. When one
or more answers are provided, the asker decides which answer to
accept, and marks it with (✓).

java class to trust all for sending file to https web service

…	

… 	
①  		

②  		

I	need	to	write	my	own	class	to	tell	mule	that	h3ps	connec5on	to	service		
(wsdl)	is	verified.	I	already	have	mule	project	nearly	finnished	but	last	piece	is		
missing,	sending	file	at	specific	url.	
	
What	I	want	to	achieve:	

What	worked	for	me	is	to	set	the	TrustManagerFactory	on	the	HTTPS	
connector.	Here's	how	I	did	it.	
	
First,	create	a	keystore	that	contains	the	cer5ficate	of	the	SSL	server	you	
want	to	trust.	You	can	create	the	keystore	using	the	tools	included	with	the	

Figure 1: A highly viewed post (viewed 556 times) asking
about HTTPS workarounds to bypass key checking and al-
low all host names [33]

We obtained 22,195 posts containing keywords “java” and “secu-
rity”. After extracting the question, answers, and relevant metadata
for each post, we refined the data in three ways.

1) Filtering less useful posts. We automatically refined posts by
removing duplicated posts, posts without accepted answers, and
posts whose questions received negative votes (perhaps because
the questions were ill-formed or confusing).

2) Removing posts without code snippets. To better understand the
questions within the program context, we only focused on posts
containing code snippets. Since our crawled data did not include any
metadata describing the existence of code snippets, we developed
an intuitive filter to search for keywords “public” and “class” in
each post. Based on our observation, a post usually contains these
two keywords when it includes a code snippet.

3) Discarding irrelevant posts.After applying the above two filters,
we manually examined the remaining posts, and decided whether
they were relevant to Java secure coding, or simply contained the
checked keywords accidentally.

With the above three filters, we finally included 503 posts in our
dataset asked between 2008-2016. We did not include posts asked
in 2017, because at the time we conducted experiments, data for

only the first several months of 2017 was available. When manually
filtering retrieved posts, we also characterized relevant posts based
on their security concerns, programming challenges, and security
vulnerabilities. Based on this characterization, we classified posts
and investigated the following three research questions (RQs):

RQ1: What are the common security concerns of develop-
ers? We aimed to investigate: (1) what are the popular security
libraries or functionalities that developers frequently asked about,
and (2) how have developers’ security concerns shifted over the
years? Since we had no prior knowledge of developers’ security
concerns, we adopted an open coding approach to classify posts
accordingly. Specifically, Author 4 initially categorized posts based
on the software libraries and security concepts discussed. Author
1 (an SE professor) then iteratively reviewed posts to create and
adjust the identified security concerns. Next, Author 2 examined
around 150 posts suggested by Author 1 to identify security vul-
nerabilities in their answers. To ensure high quality of findings,
the two authors cross checked results, and resolved disagreement
when necessary with Author 3 (a cybersecurity professor).

We also classified posts into three categories based on the number
of positive votes and favorite counts their questions received:

• Neutral: A question does not have any positive vote or fa-
vorite count.
• Positive: A question receives at least one positive vote but
zero favorite count.
• Favorite: A question obtains at least one favorite vote.

Thus, the post in Figure 1 is classified as “Favorite”, because its
favorite count is 1. By combining this categorization with the secu-
rity concerns, we explored developers’ attitudes towards questions
related to different concerns. We posit that although some security
concerns are common, people view their questions unfavorably,
possibly because they are so complicated and project-specific that
most developers cannot learn or benefit from them.

RQ2: What are the common programming challenges? For
each identified security concern, we further characterized each
post with its problem (buggy source code, wrongly implemented
configuration files, improperly configured execution environment),
the problem’s root cause, and the accepted solution. We then clus-
tered posts with similar characterizations. For the post in Figure 1,
we identified its problem as being a request for a SSL verification
workaround; apparently the developer was unaware SSL should
not be bypassed. Its recommended solution was to first create a
keystore that contains the certificates of all trusted SSL servers,
and then use this keystore to instantiate a TrustManagerFactory for
establishing (unverified) connections.

RQ3:What are the common security vulnerabilities? To fur-
ther our understanding of each post’s security context, we also in-
spected unaccepted answers and conversational comments between
the question asker and other developers, Based on recommended
secure coding practices and the post’s security context, we decided
whether the accepted solution was security-vulnerable. The post
shown in Figure 1 has a secure accepted answer, although the asker
originally requested a vulnerable solution as an easy fix.

ICSE’18, May 2018, Gothenburg, Sweden Na Meng Stefan Nagy Daphne Yao Wenjie Zhuang Gustavo Arango Argoty

All	StackOverflow	posts	(503)	

Implementa:on	ques:ons	(478)	 Understanding	ques:ons	(25)	

Java	plaForm	security	(140)	 Java	EE	security	(58)	 Spring	Security	(267)	 Other	(13)	

Cryptography	(64)	
Access	control	(43)	

Secure	communica:on	(31)	

Other	(2)	

Authen:ca:on	(225)	

Authoriza:on	(16)	
Configura:on	(26)	

Figure 2: Taxonomy of StackOverflow posts

4 MAJOR FINDINGS
We present our investigation results for the research questions
separately in Section 4.1-4.3.

4.1 Common Concerns in Security Coding
Figure 2 presents our classification hierarchy among the 503 posts.
At the highest level, we created two categories: implementation
questions vs.understanding questions. Themajority (478 posts)
were about implementing security functionalities or resolving pro-
gram errors. Only 25 questions were asked to understand why
specific features were designed in certain ways (e.g., “How does
Java string being immutable increase security?” [22]) Since our fo-
cus is on secure coding practices, our further classification expands
on the 478 implementation-relevant posts.

At the second level of the hierarchy, we clustered posts based
on the major security platforms or frameworks involved in each
post. Corresponding to Section 2, we identified posts relevant to
Java platform security, Java EE security, Spring Security, and
other third-party security libraries or frameworks.

At the third level, we classified the posts belonging to either Java
platform security or Spring Security, because both categories con-
tained many posts. Among the Java platform security posts, in addi-
tion to cryptography and secure communication, we identified
a third major concern—access control. Among the Spring Security
posts, we found the majority (225) related to authentication, with
the minority discussing authorization and configuration.

Finding 1: 56%, 29%, and 12% of the implementation-
relevant posts focused on Spring Security, Java platform
security, and Java EE security, indicating that developers
need more help to secure Java enterprise applications.

Based on the second- and third-level classifications, we identified
seven major security concerns: cryptography, access control, secure
communication, Java EE security, authentication, authorization,
and configuration. The first three concerns correspond to Java
platform security, while the last three correspond to Spring Security.
To reveal trends in developers’ security concerns over time, we
clustered posts based on the year each question was asked.

Figure 3 presents the post distribution among 2008-2016. The
total number of posts increased over the years, indicating that more
developers became involved in secure coding and faced problems.
Specifically, there was only 1 post created in 2008, but 107 posts
were created in 2016. During 2009-2011, most posts were about Java

0	 20	 40	 60	 80	 100	 120	

2016	

2015	

2014	

2013	

2012	

2011	

2010	

2009	

2008	 Cryptography	
Access	control	
Secure	communica>on	
Java	EE	security	
Authen>ca>on	
Authoriza>on	
Configura>on	

Figure 3: The post distribution during 2008-2016

platform security. However, since 2012, the major security concern
has shifted to securing Java enterprise applications (including both
Java EE security and Spring Security). Specifically, Spring Security
has taken up over 50% of the posts published every year since 2013.

Neutral	 Posi-ve	 Favorite	

0%	 20%	 40%	 60%	 80%	 100%	

Configura-on	

Authoriza-on	

Authen-ca-on	

Java	EE	security	

Secure	communica-on	

Access	control	

Cryptography	

Figure 4: The post distribution among developers’ attitudes:
neutral, positive, and favorite

As shown in Figure 4, we also clustered posts based on devel-
opers’ attitudes towards the questions for each security concern.
The configuration posts received the highest percentage of neutral
opinions (50%). One possible reason is that these posts mainly fo-
cused on problems caused by incorrect library versions and library
dependency conflicts. Since such problems are usually specific to
software development environments, they are not representative or
relevant to many developers’ security interests. In comparison, se-
cure communication posts received the lowest percentage of neutral
opinions (16%), but the highest percentage of favorite (61%), indi-
cating that the questions were more representative, focusing more
on security implementation instead of environment configuration.

Secure Coding Practices in Java: Challenges and Vulnerabilities ICSE’18, May 2018, Gothenburg, Sweden

Finding 2: Over time, developers’ major security concern
has shifted from securing Java platform to enterprise ap-
plications, especially the Spring Security framework. Secure
communication posts received the highest percentage (61%)
of favorite votes, indicating that these questions are both
important and representative.

4.2 Common Programming Challenges
To understand the common challenges developers faced, we further
examined the posts of the most popular five major categories: au-
thentication (225), cryptography (64), Java EE security (58), access
control (43), and secure communication (31). We identified posts
with similar questions and related answers, and further investi-
gated why developers asked these common questions. This section
presents our key findings for each category.

4.2.1 Authentication. Most posts were related to (1) integrating
Spring security with different application servers (e.g., JBoss) [59]
or frameworks (e.g., Spring MVC) [55] (35 posts), (2) configuring
security in an XML-based [56] or Java-based way [27] (145 posts),
or (3) converting XML-based configurations to Java-based ones [10]
(18 posts). Specifically, we observed three challenges.

Challenge 1: There is much variation in integrating Spring Se-
curity (SS) with different types of applications. Although SS can
be used to secure enterprise applications no matter whether the
applications are Spring-based or not, the usage varies with the
application settings [58]. Even worse is that some SS-relevant im-
plementations may exhibit different dynamic behaviors in different
application contexts. As shown in Listing 1, by following a standard
tutorial example [68], a developer defined two custom authentica-
tion filters—apiAuthenticationFilter and webAuthenticationFilter—to
secure two sets of URLs of his/her Spring Boot web application.

Listing 1: An exemplar implementation working unexpect-
edly in Spring Boot applications [13]

1 @EnableWebSecurity
2 p u b l i c c l a s s S e c u r i t yC on f i g u r a t i o n {
3 @Conf igura t ion @Order (1)
4 p u b l i c s t a t i c c l a s s Ap iCon f i gu r a t i onAdap t e r
5 ex t ends WebSecur i t yCon f i gu re rAdap te r {
6 @Bean
7 p u b l i c G e n e r i c F i l t e r B e a n
8 a p i A u t h e n t i c a t i o n F i l t e r () { . . . }
9 @Override
10 p r o t e c t e d vo id c on f i g u r e (H t t p S e c u r i t y h t t p)
11 throws Excep t i on {
12 h t t p . antMatcher (" / a p i / ∗ ∗ ")
13 . a d d F i l t e r A f t e r (a p i A u t h e n t i c a t i o n F i l t e r () . . .)
14 . sess ionManagement () . . . ; } }
15 @Conf igura t ion @Order (2)
16 p u b l i c s t a t i c c l a s s WebSecu r i t yCon f i gu r a t i on
17 ex t ends WebSecur i t yCon f i gu re rAdap t e r {
18 @Bean
19 p u b l i c G e n e r i c F i l t e r B e a n
20 we bAu t h e n t i c a t i o n F i l t e r () { . . . }
21 @Override
22 p r o t e c t e d vo id c on f i g u r e (H t t p S e c u r i t y h t t p)

23 throws Excep t i on {
24 h t t p . antMatcher (" / ")
25 . a d d F i l t e r A f t e r (w e bAu t h e n t i c a t i o n F i l t e r () . . .)
26 . a u t h o r i z e R e qu e s t s () . . . ; } } }

In Listing 1, lines 3-14 correspond to ApiConfigurationAdapter, a se-
curity configuration class that specifies apiAuthenticationFilter to
authenticate URLs matching the pattern “/api/**”. Lines 15-26 corre-
spond to WebSecurityConfiguration, which configures webAuthentication-
Filter to authenticate the other URLs. Ideally, only one filter is in-
voked given one URL, however in reality, both filters were invoked.
The root cause is that each filter is a bean (annotated with @Bean
on lines 6 and 18). Spring Boot detects the filters and adds them
to a regular filter chain, while SS also adds them to its own filter
chain. Consequently, both filters are registered twice and can be
invoked twice. To solve the problem, developers need to enforce
each bean to be registered only once by adding specialized code.
Unfortunately, the tutorial example was documented without any
clarification about the scenarios where the code does not work.

Challenge 2: The two security configurations (Java-based and XML-
based) are hard to implement correctly. Take the Java-based config-
uration for example. There are lots of annotations and APIs of
classes, methods, and fields available to specify different configu-
ration options. Particularly, HttpSecurity has 10 methods, each of
which can be invoked on an HttpSecurity instance and then produces
another HttpSecurity object. If developers are not careful about the
invocation order between these methods, they can get errors [25].
As shown in Listing 1, the method antMatcher("/api/**’’) must be
invoked before addFilterAfter(...) (lines 12-13), so that the filter is
only applied to URLs matching the pattern “/api/**”. Unfortunately,
such implicit constraints are not well documented.

Challenge 3: Converting from XML-based to Java-based configu-
rations is tedious and error-prone. The semantic conflicts between
annotations, deployment descriptors, and code implementations
are always hard to locate and resolve. Such problems become more
serious when developers express security in a hybrid way of Java-
based and XML-based. Since Spring Security 3.2, developers are
supported to configure SS in a pure Java-based approach, and there
is documentation describing how to migrate from XML-based to
Java-based configurations [57]. However, manually applying tons
of the migration rules is still time-consuming and error-prone.

Finding 3: Spring Security authentication posts were mainly
about configuring security for various enterprise applications
in different ways (Java-based or XML-based), and convert-
ing between them. The challenges were due to incomplete
documentation, as well as missing tool support for automatic
configuration checking and converting.

4.2.2 Cryptography. 45 of the 64 posts were about key genera-
tion and usage. For instance, some posts discussed how to create
a key from scratch [38], and how to generate or retrieve a key
from a random number [26], a byte array [12], a string [30], a cer-
tificate [17], BigIntegers [5], a keystore [4], or a file [67]. Some
other posts focused on how to compare keys [9], print key informa-
tion [66], or initialize a cipher for encryption and decryption [39].

ICSE’18, May 2018, Gothenburg, Sweden Na Meng Stefan Nagy Daphne Yao Wenjie Zhuang Gustavo Arango Argoty

Specifically, we observed three common challenges of correctly
using the cryptography APIs.

Challenge 1: The error messages did not provide sufficient useful
hints about fixes. We found five posts concentrated on the same
problem: “get InvalidKeyException: Illegal key size”, while the solu-
tions were almost identical: (1) download the “Java Cryptography
Extension (JCE) Unlimited Strength Jurisdiction Policy Files”, “lo-
cal_policy.jar”, and “US_export_policy.jar”; and (2) place the policy
files in proper folders [1]. Developers got the same exception be-
cause of missing either of the two steps. Providing a checklist of
these necessary steps in the error message could help developers
quickly resolve the problem. However, the existing error messages
did not provide any constructive suggestion.

Challenge 2: It is difficult to implement security with multiple
programming languages. Three posts were about encrypting data
with one language (e.g. PHP or Python) and decrypting data with
another language (e.g., Java). Such cross-language data encryption
& decryption is challenging, because the format of the generated
data by one language requires special handling in another language.
Listing 2 is an example to generate an RSA key pair and encrypt
data in PHP, and to decrypt data in Java [16].

Listing 2: Encryption in PHP and decryption in Java [16]
1 // *****keypair.php *****
2 i f (f i l e _ e x i s t s (' p r i v a t e . key ')) {
3 echo f i l e _ g e t _ c o n t e n t s (' p r i v a t e . key ') ; }
4 e l s e {
5 i n c l u d e (' Crypt / RSA . php ') ;
6 $ r s a = new Crypt_RSA () ;
7 $ r e s = $rsa −>c r ea t eKey () ;
8 $p r i v a t eKey = $ r e s [' p r i v a t ek ey '] ;
9 $pub l i cKey = $ r e s [' pub l i ckey '] ;
10 f i l e _ p u t _ c o n t e n t s (' p u b l i c . key ' , $pub l i cKey) ;
11 f i l e _ p u t _ c o n t e n t s (' p r i v a t e . key ' , $ p r i v a t eKey) ; }
12 // *****encrypt.php *****
13 i n c l u d e (' Crypt / RSA . php ') ;
14 $ r s a = new Crypt_RSA () ;
15 $rsa −>se tEncryp t ionMode (CRYPT_RSA_ENCRYPTION_OAEP) ;
16 $rsa −>loadKey (f i l e _ g e t _ c o n t e n t s (' p u b l i c . key ')) ;
17 // *****MainClass.java *****
18 BASE64Decoder decoder =new BASE64Decoder () ;
19 S t r i n g b64P r i v a t eKey = ge tCon t en t s (
20 " h t t p : / / l o c a l h o s t / a p i / k eypa i r . php ") . t r im () ;
21 by te [] decodedKey=decoder . d e codeBu f f e r (b 64P r i v a t eKey) ;
22 Bu f f e r e dReade r br=new Bu f f e r edReade r (
23 new S t r i n gRe ad e r (new S t r i n g (decodedKey))) ;
24 PEMReader pr=new PEMReader (br) ;
25 KeyPa i r kp =(KeyPa i r) pr . r e a dOb j e c t () ;
26 pr . c l o s e () ;
27 P r i v a t eKey p r i v a t eKey =kp . g e t P r i v a t e () ;
28 Cipher c i p h e r =Cipher . g e t I n s t a n c e (
29 "RSA / None / OAEPWithSHA1AndMGF1Padding " , " BC ") ;
30 c i p h e r . i n i t (C ipher . DECRYPT_MODE , p r i v a t eKey) ;
31 by te [] p l a i n t e x t = c i p h e r . d o F i n a l (c i p h e r) ;

In this example, when a key pair is generated in PHP (lines 2-11),
the public key is easy to retrieve in PHP (lines 13-16). However,
retrieving the private key in Java is more complicated (lines 18-30).
After reading in the private key string (lines 19-20), the Java imple-
mentation first uses Base64Decoder to decode the string into a byte

array (line 21), which corresponds to an OpenSSL PEM encoded
stream (line 22-23). Because OpenSSL PEM is not a standard data
format, the Java code further uses a PEMReader to convert the
stream to a PrivateKey instance (lines 24-27) before using the key
to initialize a cipher (lines 28-30). Existing documentation seldom
describes how the security data format (e.g., key) defined in one
language corresponds to that of another language. Unless develop-
ers are experts in both languages, it is hard for them to figure out
the security data processing across languages.

Challenge 3: Implicit constraints on API usage cause confusion. Two
posts were about getting “InvalidKeySpecException: algid parse
error, not a sequence”, when obtaining a private key from a file [29].
The problem is that the key should be in PKCS#8 format when used
to create a PKCS8EncodedKeySpec instance, as shown below:

Listing 3: Consistency between the key format and spec [29]
1 / / pr ivKey shou ld be in PKCS#8 format
2 by te [] pr ivKey = . . . ;
3 PKCS8EncodedKeySpec keySpec=
4 new PKCS8EncodedKeySpec (pr ivKey) ;

The tricky part here is that a private key retrieved from a file always
has the data type byte[] even if it is not in PKCS#8 format. If devel-
opers invoke the API PKCS8EncodedKeySpec(...) with a non-PKCS#8
formatted key, they will be stuck with the clueless exception. Three
solutions were suggested to get a PKCS#8 format key: (1) to im-
plement code to convert the byte array, (2) to use an OpenSSL
command to convert the file format, or (3) to use the PEMReader class
of BouncyCastle to generate a key from the file. Such implicit con-
straints between an API and its input format are delicate.

Finding 4: The cryptography posts were majorly about
key generation and usage. Developers asked these questions
mainly due to clueless error messages, cross-language data
handling, and implicit API usage constraints.

4.2.3 Java EE security. 33 of the 58 posts were on authentication
and authorization. However, the APIs of these two security fea-
tures were defined differently on different application servers (e.g.,
WildFly and Glassfish), and developers might use these servers in
combination with diverse third-party libraries [49]. As a result, the
posts seldom shared common solutions or code implementation.

One common challenge we identified is the usage of declarative
security and programmatic security. When developers misunder-
stood annotations, they could use incorrect annotations that conflict
with other annotations [35], deployment descriptors [72], code im-
plementation [11], or file paths [48]. Nevertheless, existing error
reporting systems only throw exceptions. There is no tool helping
developers identify or resolve conflicting configurations.

Finding 5: Java EE security posts were mainly about au-
thentication and authorization. One challenge is the complex
usage of declarative security and programmatic security, and
any complicated interaction between the two.

Secure Coding Practices in Java: Challenges and Vulnerabilities ICSE’18, May 2018, Gothenburg, Sweden

4.2.4 Access Control. 43 posts mainly discussed how to restrict
or relax the access permission(s) of a software application for certain
resource(s).

Specifically, 21 questions asked about restricting untrusted code
from accessing certain packages [40], classes [42], or class members
(i.e., methods and fields) [20]. Two alternative solutions were com-
monly suggested for these questions: (1) to override the checkXXX()

methods of SecurityManager to disallow invalid accesses, or (2) to
define a custom policy file to grant limited permissions. Another
nine posts were on how to allow applets to perform privileged
operations [53], because applets are executed in a security sand-
box by default and can only perform a set of safe operations. One
commonly recommended solution was to digitally sign the applet.
Although it seems that there exist common solutions to the most fre-
quently asked questions, the access control implementation is not
always intuitive. We identified two common challenges of correctly
implementing access control.

Challenge 1: The effect of access control varies with the program
context.We identified two typical scenarios from the posts. First, the
RMI tutorial [28] suggested that a security manager is needed only
when RMI code downloads code from a remote machine. Including
a SecurityManager instance in the RMI programwhich does not down-
load any code can cause an AccessControlException [37]. Second,
although a signed applet is allowed to perform sensitive operations,
it loses its privileges when being invoked from Javascript [21]. As a
result, the invocation to the signed applet should be wrapped with
an invocation of AccessController.doPrivileged(...).

Challenge 2: The effect of access control varies with the execu-
tion environment. SecurityManager can disallow illegal accesses via
reflection only when the program is executed in a controlled envi-
ronment (i.e., on a trusted server) [7]. Nevertheless, if the program
is executed in an uncontrolled environment (e.g. on an untrusted
client machine) and hackers can control how to run the program
or manipulate the jar file, the security mechanisms become voided.

Finding 6: The access control posts were mainly about
SecurityManager, AccessController, and the policy file. Config-
uring and customizing access control policies are challenging.

4.2.5 Secure Communication. Among the 31 examined posts,
22 posts were about SSL/TLS-related issues, discussing how to cre-
ate [60], install [64], find [43], or validate an SSL certificate [62],
how to establish a secure connection [36], and how to use SSL to-
gether with other libraries, such as JNDI [23] and PowerMock [70].

In particular, six posts focused on the problem of unable to find
a valid server certificate to establish an SSL connection with a
server [43]. Instead of advising to install the required certificates,
two accepted answers suggested a highly insecure workaround to
disable the SSL verification process, so that any incoming certifi-
cate can pass the validation [61]. Although such workarounds can
effectively remove the error, they essentially fail the requirement
to secure communication with SSL. In Section 4.3, we will further
explain the security vulnerability due to such workarounds. Devel-
opers likely accepted the vulnerable answers because they found it
challenging to implement the whole process of creating, installing,
finding, and validating an SSL certificate.

Finding 7: Security communication posts mainly discussed
the process of establishing SSL/TLS connections. This process
contains somany steps that developers were tempted to accept
a broken solution to simply bypass the security check.

4.3 Common Security Vulnerabilities
Among the five categories listed in Section 4.2, we identified security
vulnerabilities in the accepted answers of three frequently discussed
topics: Spring Security’s csrf(), SSL/TLS, and password hashing.

4.3.1 Spring Security’s csrf(). Cross-site request forgery (CSRF)
is a serious attack that tricks a web browser into executing an
unwanted action (e.g., transfer money to another account) in a
web application (e.g., a bank website) for which a user is authenti-
cated [106]. The root cause is that attackers created forged requests
and mixed them with legitimate ones. Since the application cannot
distinguish between the two types of requests, it normally responds
to the forged requests, performing undesired operations.

By default, Spring Security provides CSRF protection by defining
a function csrf() and implicitly enabling the function invocation.
Correspondingly, developers should include the CSRF token in all
PATCH, POST, PUT, and DELETE methods to leverage the protec-
tion [31]. However, among the 12 examined posts that were rele-
vant to csrf(), 5 posts discussed program failures, while all the ac-
cepted answers suggested an insecure solution: disabling the CSRF
protection by invoking http.csrf().disable(). In one instance, after
accepting the vulnerable solution, an asker commented “Adding
csrf().disable() solved the issue!!! I have no idea why it was enabled
by default” [45]. Unfortunately, the developer happily disabled the
security protection without realizing that such workaround would
expose the resulting software to CSRF security exploits.

Finding 8: In 5 of the 12 csrf()-relevant posts, developers
took the suggestion to irresponsibly disable the default CSRF
protection. Developers were unaware of the potential vulner-
abilities resulting from use of such insecure code.

4.3.2 SSL/TLS. We examined 10 posts discussing the usage of
SSL/TLS, and observed two important security issues.

Problem 1: Many developers opted to trust all SSL certificates and
permit all hostnames with the intent of quickly building a prototype
in the development environment. SSL is the standard security tech-
nology for establishing an encrypted connection between a web
server and browser. Figure 5 details the major steps of establishing
an SSL connection [50]. To activate SSL on the server, developers
need to provide all identity information of the website (e.g., the
host name) to a Certification Authority (CA), and request for an
SSL certificate (Step 1⃝). After validating the website’s information,
the CA issues a digitally signed SSL certificate (Step 2⃝). When a
client or browser attempts to connect to the website (Step 3⃝), the
server sends over its certificate (Step 4⃝). The client then conducts
several checks, including (1) whether the certificate is issued by a
CA the browser trusts, and (2) whether the requested hostname
matches the hostname associated with the certificate (Step 5⃝). If

ICSE’18, May 2018, Gothenburg, Sweden Na Meng Stefan Nagy Daphne Yao Wenjie Zhuang Gustavo Arango Argoty

all these checks are passed, the SSL connection can be established
successfully.

Cer$ficate	
Authority	

① Request	for		
an	SSL	cert.	

② Issue		
an	SSL	cert.	

Client	 Server	

③ Ini$ate	an	SSL	connec$on	

④ Send	the	SSL	cert.	

⑤ Validate	SSL	cert.	

Figure 5: Simplified overview of creating an SSL connection

Though safest practice is to enable SSL only after obtaining
a signed certificate from a CA, many developers implement and
test certificate verification code before obtaining one. A common
workaround without CA-signed certificates is to create a local
self-signed certificate for use in implementing certificate verifica-
tion [60]. However, 9 of the 10 examined posts accepted an insecure
solution to bypass security checks entirely by trusting all certifi-
cates and/or allowing all hostnames, as demonstrated by Listing 4.

Listing 4: A typical implementation to disable SSL certificate
validation [52]

1 // Create a trust manager that does not validate certificate chains
2 TrustManager [] t r u s t A l l C e r t s = new TrustManager [] {
3 new X509TrustManager () {
4 p u b l i c j a v a . s e c u r i t y . c e r t . X 5 0 9 C e r t i f i c a t e []
5 g e tA c c e p t e d I s s u e r s () { r e t u r n n u l l ; }
6 p u b l i c vo id c h e c kC l i e n tT r u s t e d (. . .) { }
7 p u b l i c vo id ch e ckS e r v e rT ru s t e d (. . .) { } } } ;
8 // Install the all-trusting trust manager
9 t r y {
10 SSLContext s c = SSLContext . g e t I n s t a n c e (" SSL ") ;
11 s c . i n i t (nu l l , t r u s t A l l C e r t s ,
12 new j a v a . s e c u r i t y . SecureRandom ()) ;
13 HttpsURLConnect ion . s e tD e f a u l t S S L S o c k e t F a c t o r y (
14 s c . g e t S o c k e t F a c t o r y ()) ;
15 } c a t ch (Excep t i on e) { }
16 // Access an https URL without any certificate
17 t r y {
18 URL u r l =new URL (" h t t p s : / / hostname / index . html ") ;
19 } c a t ch (MalformedURLExcept ion e) { }

Disabling the SSL certificate validation process completely in-
validates the secure communication protocol, leaving clients sus-
ceptible to man-in-the-middle (MITM) attacks [85]; Namely,
by secretly relaying and possibly altering communication (e.g.,
through DNS poisoning) between client and server, attackers can
fool the SSL-client to instead connect to an attacker-controlled
server [85]. Although the insecurity of this coding practice was
highlighted in 2012 [85], three examined posts created since then
still discussed the bad practice [8, 33, 61]. This indicates a significant
gap between security theory and coding practices. Some developers
justified their verification-bypassing logic by saying “I want my

client to accept any certificate (because I’m only ever pointing to
one server)”, or “Because I needed a quick solution for debugging
purposes only. I would not use this in production due to the security
concerns . . . ” [65]. However, as pointed by another SO user [65]
and demonstrated by prior research [82, 85], many of these im-
plementations find their way into production software, and
have yielded radically insecure systems as a result.

Problem 2: Developers were unaware of the best usage of SSL/TLS.
TLS is SSL’s successor. It is so different from SSL that the two pro-
tocols do not interoperate. To maintain the backward compatibility
with SSL 3.0 and interoperate with systems supporting SSL, most
SSL/TLS implementations allow for protocol version negotiation: if
a client and a server cannot connect via TLS, they will fall back to
using the older protocol SSL 3.0. In 2014, Möller et al. reported the
POODLE attack which exploits the SSL 3.0 fallback [93]. Specif-
ically, there is a design vulnerability in the way SSL 3.0 handles
block cipher mode padding, which can be exploited by attackers to
decrypt encrypted messages. With the POODLE attack, a hacker
can intentionally trigger a TLS connection failure and force usage
of SSL 3.0, allowing decryption of encrypted messages.

Ever since 2014, researchers have recommended developers to
disable SSL 3.0 support and configure systems to present the SSL 3.0
fallback. The US government (NIST) mandates ceasing SSL usage in
the protection of Federal information [19]. Nevertheless in reality,
none of the 10 posts mentioned the POODLE attack. The single
post we examined created in 2016 [61] relied on SSL.

Finding 9: 9 of 10 SSL/TLS-relevant posts discussed insecure
code to bypass security checks. We observed two important
security threats: (1) StackOverflow contains a lot of obsolete
and insecure coding practices; and (2) secure programmers
are unaware of the state-of-the-art security knowledge.

4.3.3 Password Hashing. We found 6 posts related to hashing
passwords withMD5 or SHA-1 to store user credentials in databases.
However, these hashing functions were found insecure [102, 104].
They are vulnerable to offline dictionary attacks [15]; After ob-
taining a password hash H from a compromised database, a hacker
can use brute-forcemethods to enumerate a list of password guesses,
until finding the password P whose hash value matches H . Im-
personating a valid user at login allows an attacker to conduct
malicious behavior. Researchers recommended key-stretching al-
gorithms (e.g., PBKDF2, bcrypt, and scrypt) as the best practice for
secure password hashing, as these algorithms are specially crafted
to slow down hash computation by orders ofmagnitude [75, 84, 101],
which substantially increases the difficulty of dictionary attacks.

Unfortunately, only 3 of the 6 posts (50%) mentioned the best
practice in their accepted answers, indicating that many posts on
secure hashing recommended insecure hash functions. We found
one post which asked about using MD5 hashing in Android [46].
Although subsequent discussion between developers revealed some
recommendations of avoidingMD5, the asker kept justifying his/her
choice of MD5. The asker even shared a completely wrong under-
standing of secure hashing: “The security of hash algorithms really
is MD5 (strongest) > SHA-1 > SHA-256 > SHA-512 (weakest)”, although
the opposite is true, which is MD5 < SHA-1 < SHA-256 < SHA-512.

Secure Coding Practices in Java: Challenges and Vulnerabilities ICSE’18, May 2018, Gothenburg, Sweden

Among these posts, some developers misunderstood security APIs
and ignored the potential consequences of their API choices. Such
posts can have profound negative impact, because they may mis-
lead people by conveying incorrect information on an otherwise
popular website.

Finding 10: 3 of 6 hashing-relevant posts accepted vulnera-
ble solutions as correct answers, indicating that developers
were unaware of best secure programming practices. Incorrect
security information may propagate among StackOverflow
users and negatively influence software development.

4.3.4 Potential social impacts of insecure coding practices. Among
the 17 SO posts that either discussed or recommended insecure
coding practices relevant to CSRF, SSL/TLS, and password hashing,
we observed two phenomena. First, the total view count of these
posts is 622,922. Such a large viewcount means many developers
have read these posts, while some have perhaps already heeded
their erroneous advice and incorporated vulnerable code in their
own projects. Second, the influential answers are not necessarily se-
cure. In one post [24], the insecure suggestion by a user with higher
reputation (i.e., 55.6K reputation score) was selected as the accepted
answer, as opposed to the correct fix by a user with lower reputa-
tion (29K). In another post [52], one insecure “quick fix” answer
received 5 votes probably because it indeed eliminated the error
messages. The positive indicators for insecure solutions (e.g., high
reputation and positive votes) can mislead developers to implement
insecure practices.

Finding 11: Highly viewed posts may influentially promote
insecure coding practices. This problem may be further ag-
gravated by misleading indicators such as accepted answers,
answers’ positive votes, and responders’ high reputation.

5 RELATEDWORK
This section describes related work on analyzing, detecting, and
preventing security vulnerabilities due to library API misuse.

5.1 Analyzing Security Vulnerabilities
Prior studies showed API misuse caused many security vulnera-
bilities [88, 90, 103, 105]. For instance, Long identified several Java
features (e.g., the reflection API) whose misuse or improper im-
plementation can compromise security [90]. Lazar et al. manually
examined 269 published cryptographic vulnerabilities in the CVE
database, and observed 83% of them were caused by the misuse
of cryptographic libraries [88]. Veracode reported that 39% of all
applications used broken or risky cryptographic algorithms [103].

Barua et al. automatically extracted latent topics in SO posts [74],
but not specific to security. Nadi et al. reported the obstacles of
using cryptography APIs by examining 100 SO posts and 48 devel-
opers’ survey inputs [94]. Acar et al. focused on the vulnerabilities
in Android code [73]. The studies by Yang et al. [105] and Rah-
man [97] are the most relevant to our research. They automatically

extracted security-relevant topics from SO questions, and identi-
fied high-frequency keywords like “Password” and “Hash” for post
categorization. However, neither study focused on developers’ pro-
gramming challenges and security vulnerabilities in posts as we
did. Our SE and security findings have more technical depth.

5.2 Detecting Security Vulnerabilities
Approaches were built to detect security vulnerabilities caused
by API misuse [77, 80, 82, 83, 85, 87, 89, 96]. For instance, Egele
et al. implemented a static checker for six well defined Android
cryptographic API usage rules, such as “Do not use ECB mode
for encryption”, and analyzed 11,748 Android applications for any
rule violation [80]. They found 88% of the applications violated at
least one checked rule. Fischer et al. extracted Android security-
related code snippets from SO, and manually labeled a subset of the
data as “secure” or “insecure” [83]. The labeled data allowed them
to train a classifier and efficiently judge whether a code snippet
is secure or not for the whole data set. Next, they searched for
code clones of the snippets in 1.3 million Android apps, and found
many clones of the insecure code. Fahl et al. [82] and Georgiev et
al. [85] separately implemented an attackmodel: man-in-the-middle
attack, and detected vulnerable Android applications and software
libraries which misused SSL APIs. Both research groups observed
that developers disabled certification validation for testing with
self-signed and/or trusted certificates. He et al. developed SSLINT,
an automatic static analysis tool, to identify the misuse of SSL/TLS
APIs in client-side applications [87].

Compared with prior research, our study has two new contri-
butions. First, our scope is broader. We report new challenges on
secure coding practices, such as complex security configurations
in Spring Security and developers’ outdated security knowledge.
Second, our investigation of an online forum provides a new social
perspective about secure coding. These unique insights cannot be
discovered through analyzing code.

5.3 Preventing Security Vulnerabilities
Researchers proposed approaches to prevent developers from im-
plementing vulnerable code and misusing APIs [78, 79, 81, 91,
92, 100]. For example, Mettler et al. designed Joe-E—a security-
oriented subset of Java—to support secure coding by removing any
encapsulation-breaking features from Java (e.g., reflection), and
by enforcing the least privilege principle [91]. Keyczar is a library
designed to simplify the cryptography usage, and thus to prevent
API misuse [79]. Below shows how to decrypt data with Keyczar:

Listing 5: Simple decryption with Keyczar APIs
1 Cryp te r c r y p t e r =new Cryp te r (" / r s a k ey s ") ;
2 S t r i n g p l a i n t e x t = c r y p t e r . d e c ryp t (c i p h e r t e x t) ;

Compared with the decryption code shown in Listing 2 (lines 18-31),
this implementation is much simpler and more intuitive. All details
about data format conversion and cipher initialization are hidden,
while a default strong block cipher is used to properly decrypt data.

Some approaches were developed to apply formal verification
techniques and analyze the security properties of cryptographic
protocol specifications [78, 92] and cryptographic API implemen-
tations [81, 100]. For instance, Protocol Composition Logic (PCL)

ICSE’18, May 2018, Gothenburg, Sweden Na Meng Stefan Nagy Daphne Yao Wenjie Zhuang Gustavo Arango Argoty

is a logic for proving security properties, like network protocols
that use public and symmetric key cryptography [78]. The logic is
designed around a process calculus with actions for possible proto-
col steps, including generating new random numbers and sending
and receiving messages The proof system consists of axioms about
individual protocol actions, and inference rules that yield assertions
about protocols composed of multiple steps.

6 OUR RECOMMENDATIONS
By analyzing the SO posts relevant to Java security from both soft-
ware engineering and security perspectives, we observed the gap
between the intended usage of APIs and the actual problematic
API usage by developers, sensed developers’ frustration when they
spent tremendous effort identifying correct API usage (e.g., two
weeks as mentioned in [55]), and observed potential security con-
sequences from library misuses. Below are our recommendations
based on the analysis.

For SecurityDevelopers. Conduct security testing to checkwhether
the implemented features work as expected. Do not disable security
checks (e.g., CSRF check) to implement a temporary fix in the test-
ing or development environment. Be cautious when following SO
accepted or reputable answers to implement secure code, because
these solutions may be unsafe and outdated. For SO administrators,
we recommend them to specially handle the posts with vulnera-
ble code, because these posts may influentially mislead security
developers.

For Library Designers. Remove or deprecate the APIs whose
security guarantees are broken (e.g., MD5). Design clean and helpful
error reporting interfaces which show not only the error, but also
possible root causes and solutions. Design simplified APIs with
strong security defenses implemented by default.

For Tool Builders. Develop automatic tools to diagnose security
errors, locate buggy code, and suggest security patches or solutions.
Build vulnerability prevention techniques, which compare peer ap-
plications that use the same set of APIs to infer and warn potential
misuses. Explore approaches that check and enforce the seman-
tic consistency between security-relevant annotations, code, and
configurations. Build new approaches to transform between the im-
plementations of declarative security and programmatic security.

7 THREATS TO VALIDITY
This study ismainly based on ourmanual inspection of Java security-
relevant posts, so the observations may be subject to human bias.
To alleviate the problem, the first author of the paper conducted
multiple careful inspections of all posts relevant to implementation
questions, while the second author also examined the posts related
to security vulnerabilities (mentioned in Section 4.3) multiple times.

To remove posts without code snippets, we defined a filter to
search for keywords “public” and “class”. If a post does not contain
both words, the filter automatically removes the post from our data
set. This filter may incorrectly remove some relevant posts that
contain code. In the future, we will improve our crawling technique
to keep the <code> tags around code snippets in the raw data,
and then rely on these tags to filter posts more precisely. We will

also leverage Cerulo et al.’s approach [76] to automatically extract
source code from free text.

We conservatively mentioned posts whose accepted answers
will cause security vulnerabilities, although there might be more
accepted answers that suffer from known security attacks. Due to
the limited available program and environment information in each
post, and our limited knowledge about frameworks and potential
security attacks, we decided not to mention suspicious posts whose
accepted answers might lead to security vulnerabilities.

8 CONCLUSION
Our work aimed at assessing the current secure coding practices,
and identifying potential gaps between theory and practice, and be-
tween specification and implementation. Our analysis of hundreds
of posts on the popular developer forum (StackOverflow) revealed
a worrisome reality in the software development industry.

• A substantial number of developers do not appear to un-
derstand the security implications of coding options, show-
ing a lack of cybersecurity training. This situation creates
frustration in developers, who sometimes end up choosing
completely insecure-but-easy fixes. Examples of such easy
fixes include using obsolete cryptographic hash functions,
disabling CSRF protection, trusting all certificates to enable
SSL/TLS, or using obsolete communication protocols. These
poor coding practices, if used in production code, will seri-
ously compromise the security of software products.
• We provided substantial empirical evidence showing that
(1) Spring Security usage is overly complicated and poorly
documented; (2) the error reporting systems of Java platform
security APIs cause confusion; and (3) the multi-language
support for securing data is rather weak. These issues can
seriously hinder developers’ productivity, resulting in great
frustration and confusion.
• Interestingly, we found that the social dynamics among
askers and responders can impact people’s security choices.
Highly viewed posts may wrongly promote vulnerable code.
Metadata like accepted answers, responders’ reputation scores,
and answers’ positive vote counts can further mislead devel-
opers to take insecure advices.
• Developers’ security concerns have shifted from cryptogra-
phy APIs to Spring Security over time, although researchers
have not provided scientific solutions to resolve the vulnera-
bilities in such new context.

We described several possible solutions to improve secure coding
practices in the paper. However, efforts (e.g., workforce retraining)
to correct these alarming security issues may take a while to take
effect. Our future work is on building automatic or semi-automatic
security bug detection and fixing tools.

ACKNOWLEDGMENT
We thank anonymous reviewers for their thorough comments on
our earlier version of the paper. This work was supported by NSF
Grant No. CCF-1565827 and ONR-450487.

Secure Coding Practices in Java: Challenges and Vulnerabilities ICSE’18, May 2018, Gothenburg, Sweden

REFERENCES
[1] 2017. AES-256 implementation in GAE. https://stackoverflow.com/questions/

12833826/aes-256-implementation-in-gae. (2017).
[2] 2017. Apache Shiro Documentation. https://shiro.apache.org/documentation.

html. (2017).
[3] 2017. Application Server - Oracle WebLogic Server. https://www.oracle.com/

middleware/weblogic/index.html. (2017).
[4] 2017. Basic Program for encrypt/Decrypt : javax.crypto.BadPaddingException:

Decryption error. https://stackoverflow.com/questions/39518979/
basic-program-for-encrypt-decrypt-javax-crypto-badpaddingexception-decryption.
(2017).

[5] 2017. BigInteger to Key. https://stackoverflow.com/questions/10271164/
biginteger-to-key. (2017).

[6] 2017. Bouncy Castle. https://www.bouncycastle.org. (2017).
[7] 2017. Can a secret be hidden in a ’safe’ java class offering ac-

cess credentials? https://stackoverflow.com/questions/5761519/
can-a-secret-be-hidden-in-a-safe-java-class-offering-access-credentials.
(2017).

[8] 2017. Communication with server that support ssl in
java. (2017). https://stackoverflow.com/questions/21156929/
java-class-to-trust-all-for-sending-file-to-https-web-service

[9] 2017. Compare two Public Key values in java [duplicate]. https://stackoverflow.
com/questions/37439695/compare-two-public-key-values-in-java. (2017).

[10] 2017. Configure Spring Security without XML in Spring 4. https://stackoverflow.
com/questions/20961600/configure-spring-security-without-xml-in-spring-4.
(2017).

[11] 2017. @Context injection in Stateless EJB used by JAX-RS. https://stackoverflow.
com/questions/29132547/context-injection-in-stateless-ejb-used-by-jax-rs.
(2017).

[12] 2017. Converted secret key into bytes, how to convert it back
to secrect key? https://stackoverflow.com/questions/5364338/
converted-secret-key-into-bytes-how-to-convert-it-back-to-secrect-key.
(2017).

[13] 2017. Custom Authentication Filters in multiple HttpSecurity ob-
jects using Java Config. https://stackoverflow.com/questions/37304211/
custom-authentication-filters-in-multiple-httpsecurity-objects-using-java-config.
(2017).

[14] 2017. CWE-227: Improper Fulfillment of API Contract (’API Abuse’). https:
//cwe.mitre.org/data/definitions/227.html. (2017).

[15] 2017. Dictionary Attacks 101. https://blog.codinghorror.com/
dictionary-attacks-101/. (2017).

[16] 2017. Encryption PHP, Decryption Java. https://stackoverflow.com/questions/
15639442/encryption-php-decryption-java. (2017).

[17] 2017. Get public and private key from ASN1 encrypted pem certifi-
cate. https://stackoverflow.com/questions/30392114/get-public-and-private-key-
from-asn1-encrypted-pem-certificate. (2017).

[18] 2017. GlassFish. https://javaee.github.io/glassfish/. (2017).
[19] 2017. Guidelines for the Selection, Configuration, and Use of Transport

Layer Security (TLS) Implementations. http://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-52r1.pdf. (2017).

[20] 2017. Hiding my security key from java reflection. https://stackoverflow.com/
questions/14903318/hiding-my-security-key-from-java-reflection. (2017).

[21] 2017. How can I get a signed Java Applet to perform privileged operations when
called from unsigned Javascript? https://stackoverflow.com/questions/1006674/
how-can-i-get-a-signed-java-applet-to-perform-privileged-operations-when-called.
(2017).

[22] 2017. How does Java string being immutable increase
security? https://stackoverflow.com/questions/15274874/
how-does-java-string-being-immutable-increase-security. (2017).

[23] 2017. how to accept self-signed certificates for JNDI/LDAP
connections? https://stackoverflow.com/questions/4615163/
how-to-accept-self-signed-certificates-for-jndi-ldap-connections. (2017).

[24] 2017. How to add MD5 or SHA hash to spring security? https://stackoverflow.
com/questions/18581463/how-to-add-md5-or-sha-hash-to-spring-security.
(2017).

[25] 2017. How to apply spring security filter only on secured
endpoints? https://stackoverflow.com/questions/36795894/
how-to-apply-spring-security-filter-only-on-secured-endpoints. (2017).

[26] 2017. How to generate secret key using SecureRan-
dom.getInstanceStrong()? https://stackoverflow.com/questions/37244064/
how-to-generate-secret-key-using-securerandom-getinstancestrong. (2017).

[27] 2017. How to override Spring Security default configuration
in Spring Boot. https://stackoverflow.com/questions/35600488/
how-to-override-spring-security-default-configuration-in-spring-boot.
(2017).

[28] 2017. Implementing a Remote Interface. http://docs.oracle.com/javase/tutorial/
rmi/implementing.html. (2017).

[29] 2017. InvalidKeySpecException : algid parse error, not
a sequence. https://stackoverflow.com/questions/31941413/
invalidkeyspecexception-algid-parse-error-not-a-sequence. (2017).

[30] 2017. java - Edit code sample to specify DES key value. https://stackoverflow.
com/questions/22858497/edit-code-sample-to-specify-des-key-value. (2017).

[31] 2017. java - Simple example of Spring Security with
Thymeleaf. https://stackoverflow.com/questions/25692735/
simple-example-of-spring-security-with-thymeleaf. (2017).

[32] 2017. Java Authentication and Authorization Service (JAAS) Reference
Guide. https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/
JAASRefGuide.html. (2017).

[33] 2017. java class to trust all for sending file to https
web service. https://stackoverflow.com/questions/21156929/
java-class-to-trust-all-for-sending-file-to-https-web-service. (2017).

[34] 2017. Java Cryptography Architecture. http://docs.oracle.com/javase/7/docs/
technotes/guides/security/crypto/CryptoSpec.html. (2017).

[35] 2017. Java EE 7 EJB Security not working. https://stackoverflow.com/questions/
30504131/java-ee-7-ejb-security-not-working. (2017).

[36] 2017. Java Mail get mails with pop3 from ex-
change server => Exception in thread “main”
javax.mail.MessagingException. https://stackoverflow.com/questions/25017050/
java-mail-get-mails-with-pop3-from-exchange-server-exception-in-thread-main.
(2017).

[37] 2017. Java RMI / access denied. https://stackoverflow.com/questions/36570012/
java-rmi-access-denied. (2017).

[38] 2017. Java Security - RSA Public Key & Private Key
Code Issue. https://stackoverflow.com/questions/18757114/
java-security-rsa-public-key-private-key-code-issue. (2017).

[39] 2017. Java security init Cipher from SecretKeySpec
properly. https://stackoverflow.com/questions/14230096/
java-security-init-cipher-from-secretkeyspec-properly. (2017).

[40] 2017. Java Security Manager completely disable reflection. https://stackoverflow.
com/questions/40218973/java-security-manager-completely-disable-reflection.
(2017).

[41] 2017. Java Security Overview. http://docs.oracle.com/javase/8/docs/technotes/
guides/security/overview/jsoverview.html. (2017).

[42] 2017. Java security: Sandboxing plugins loaded via URL-
ClassLoader. https://stackoverflow.com/questions/3947558/
java-security-sandboxing-plugins-loaded-via-urlclassloader. (2017).

[43] 2017. Java SSL - InstallCert recognizes certificate, but still “unable to find
valid certification path” error? https://stackoverflow.com/questions/11087121/
java-ssl-installcert-recognizes-certificate-but-still-unable-to-find-valid-c.
(2017).

[44] 2017. JSR-000366 Java Platform, Enterprise Edition 8 Public Review Specification.
http://download.oracle.com/otndocs/jcp/java_ee-8-pr-spec/. (2017).

[45] 2017. logout call - Spring security logout call. https://stackoverflow.com/
questions/24530603/spring-security-logout-call. (2017).

[46] 2017. MD5 hashing in Android. https://stackoverflow.com/questions/4846484/
md5-hashing-in-android. (2017).

[47] 2017. OWASP. https://www.owasp.org/index.php/Main_Page. (2017).
[48] 2017. PicketLink / Deltaspike security does not work in SOAP (JAX-

WS) layer (CDI vs EJB?). https://stackoverflow.com/questions/32392702/
picketlink-deltaspike-security-does-not-work-in-soap-jax-ws-layer-cdi-vs-ej.
(2017).

[49] 2017. Resteasy Authorization design - check a user owns
a resource. https://stackoverflow.com/questions/34315838/
resteasy-authorization-design-check-a-user-owns-a-resource. (2017).

[50] 2017. RF 6101 - The Secure Sockets Layer (SSL) Protocol Version 3.0. https:
//tools.ietf.org/html/rfc6101. (2017).

[51] 2017. Scrapy | A Fast and Powerful Scraping and Web Crawling Framework.
https://scrapy.org. (2017).

[52] 2017. security - Allowing Java to use an untrusted certificate for SS-
L/HTTPS connection. https://stackoverflow.com/questions/1201048/
allowing-java-to-use-an-untrusted-certificate-for-ssl-https-connection.
(2017).

[53] 2017. security exception when loading web image in jar. https://stackoverflow.
com/questions/2011407/security-exception-when-loading-web-image-in-jar.
(2017).

[54] 2017. Spring Security. https://projects.spring.io/spring-security/. (2017).
[55] 2017. Spring Security 4 xml configuration UserDetailsService authen-

tication not working. https://stackoverflow.com/questions/41321176/
spring-security-4-xml-configuration-userdetailsservice-authentication-not-workin.
(2017).

[56] 2017. Spring security JDK based proxy issue while using @Secured annota-
tion on Controller method. https://stackoverflow.com/questions/35860442/
spring-security-jdk-based-proxy-issue-while-using-secured-annotation-on-control.
(2017).

https://stackoverflow.com/questions/12833826/aes-256-implementation-in-gae
https://stackoverflow.com/questions/12833826/aes-256-implementation-in-gae
https://shiro.apache.org/documentation.html
https://shiro.apache.org/documentation.html
https://www.oracle.com/middleware/weblogic/index.html
https://www.oracle.com/middleware/weblogic/index.html
https://stackoverflow.com/questions/39518979/basic-program-for-encrypt-decrypt-javax-crypto-badpaddingexception-decryption
https://stackoverflow.com/questions/39518979/basic-program-for-encrypt-decrypt-javax-crypto-badpaddingexception-decryption
https://stackoverflow.com/questions/10271164/biginteger-to-key
https://stackoverflow.com/questions/10271164/biginteger-to-key
https://www.bouncycastle.org
https://stackoverflow.com/questions/5761519/can-a-secret-be-hidden-in-a-safe-java-class-offering-access-credentials
https://stackoverflow.com/questions/5761519/can-a-secret-be-hidden-in-a-safe-java-class-offering-access-credentials
https://stackoverflow.com/questions/21156929/java-class-to-trust-all-for-sending-file-to-https-web-service
https://stackoverflow.com/questions/21156929/java-class-to-trust-all-for-sending-file-to-https-web-service
https://stackoverflow.com/questions/37439695/compare-two-public-key-values-in-java
https://stackoverflow.com/questions/37439695/compare-two-public-key-values-in-java
https://stackoverflow.com/questions/20961600/configure-spring-security-without-xml-in-spring-4
https://stackoverflow.com/questions/20961600/configure-spring-security-without-xml-in-spring-4
https://stackoverflow.com/questions/29132547/context-injection-in-stateless-ejb-used-by-jax-rs
https://stackoverflow.com/questions/29132547/context-injection-in-stateless-ejb-used-by-jax-rs
https://stackoverflow.com/questions/5364338/converted-secret-key-into-bytes-how-to-convert-it-back-to-secrect-key
https://stackoverflow.com/questions/5364338/converted-secret-key-into-bytes-how-to-convert-it-back-to-secrect-key
https://stackoverflow.com/questions/37304211/custom-authentication-filters-in-multiple-httpsecurity-objects-using-java-config
https://stackoverflow.com/questions/37304211/custom-authentication-filters-in-multiple-httpsecurity-objects-using-java-config
https://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/227.html
https://blog.codinghorror.com/dictionary-attacks-101/
https://blog.codinghorror.com/dictionary-attacks-101/
https://stackoverflow.com/questions/15639442/encryption-php-decryption-java
https://stackoverflow.com/questions/15639442/encryption-php-decryption-java
https://javaee.github.io/glassfish/
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf
https://stackoverflow.com/questions/14903318/hiding-my-security-key-from-java-reflection
https://stackoverflow.com/questions/14903318/hiding-my-security-key-from-java-reflection
https://stackoverflow.com/questions/1006674/how-can-i-get-a-signed-java-applet-to-perform-privileged-operations-when-called
https://stackoverflow.com/questions/1006674/how-can-i-get-a-signed-java-applet-to-perform-privileged-operations-when-called
https://stackoverflow.com/questions/15274874/how-does-java-string-being-immutable-increase-security
https://stackoverflow.com/questions/15274874/how-does-java-string-being-immutable-increase-security
https://stackoverflow.com/questions/4615163/how-to-accept-self-signed-certificates-for-jndi-ldap-connections
https://stackoverflow.com/questions/4615163/how-to-accept-self-signed-certificates-for-jndi-ldap-connections
https://stackoverflow.com/questions/18581463/how-to-add-md5-or-sha-hash-to-spring-security
https://stackoverflow.com/questions/18581463/how-to-add-md5-or-sha-hash-to-spring-security
https://stackoverflow.com/questions/36795894/how-to-apply-spring-security-filter-only-on-secured-endpoints
https://stackoverflow.com/questions/36795894/how-to-apply-spring-security-filter-only-on-secured-endpoints
https://stackoverflow.com/questions/37244064/how-to-generate-secret-key-using-securerandom-getinstancestrong
https://stackoverflow.com/questions/37244064/how-to-generate-secret-key-using-securerandom-getinstancestrong
https://stackoverflow.com/questions/35600488/how-to-override-spring-security-default-configuration-in-spring-boot
https://stackoverflow.com/questions/35600488/how-to-override-spring-security-default-configuration-in-spring-boot
http://docs.oracle.com/javase/tutorial/rmi/implementing.html
http://docs.oracle.com/javase/tutorial/rmi/implementing.html
https://stackoverflow.com/questions/31941413/invalidkeyspecexception-algid-parse-error-not-a-sequence
https://stackoverflow.com/questions/31941413/invalidkeyspecexception-algid-parse-error-not-a-sequence
https://stackoverflow.com/questions/22858497/edit-code-sample-to-specify-des-key-value
https://stackoverflow.com/questions/22858497/edit-code-sample-to-specify-des-key-value
https://stackoverflow.com/questions/25692735/simple-example-of-spring-security-with-thymeleaf
https://stackoverflow.com/questions/25692735/simple-example-of-spring-security-with-thymeleaf
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://stackoverflow.com/questions/21156929/java-class-to-trust-all-for-sending-file-to-https-web-service
https://stackoverflow.com/questions/21156929/java-class-to-trust-all-for-sending-file-to-https-web-service
http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html
https://stackoverflow.com/questions/30504131/java-ee-7-ejb-security-not-working
https://stackoverflow.com/questions/30504131/java-ee-7-ejb-security-not-working
https://stackoverflow.com/questions/25017050/java-mail-get-mails-with-pop3-from-exchange-server-exception-in-thread-main
https://stackoverflow.com/questions/25017050/java-mail-get-mails-with-pop3-from-exchange-server-exception-in-thread-main
https://stackoverflow.com/questions/36570012/java-rmi-access-denied
https://stackoverflow.com/questions/36570012/java-rmi-access-denied
https://stackoverflow.com/questions/18757114/java-security-rsa-public-key-private-key-code-issue
https://stackoverflow.com/questions/18757114/java-security-rsa-public-key-private-key-code-issue
https://stackoverflow.com/questions/14230096/java-security-init-cipher-from-secretkeyspec-properly
https://stackoverflow.com/questions/14230096/java-security-init-cipher-from-secretkeyspec-properly
https://stackoverflow.com/questions/40218973/java-security-manager-completely-disable-reflection
https://stackoverflow.com/questions/40218973/java-security-manager-completely-disable-reflection
http://docs.oracle.com/javase/8/docs/technotes/guides/security/overview/jsoverview.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/overview/jsoverview.html
https://stackoverflow.com/questions/3947558/java-security-sandboxing-plugins-loaded-via-urlclassloader
https://stackoverflow.com/questions/3947558/java-security-sandboxing-plugins-loaded-via-urlclassloader
https://stackoverflow.com/questions/11087121/java-ssl-installcert-recognizes-certificate-but-still-unable-to-find-valid-c
https://stackoverflow.com/questions/11087121/java-ssl-installcert-recognizes-certificate-but-still-unable-to-find-valid-c
http://download.oracle.com/otndocs/jcp/java_ee-8-pr-spec/
https://stackoverflow.com/questions/24530603/spring-security-logout-call
https://stackoverflow.com/questions/24530603/spring-security-logout-call
https://stackoverflow.com/questions/4846484/md5-hashing-in-android
https://stackoverflow.com/questions/4846484/md5-hashing-in-android
https://www.owasp.org/index.php/Main_Page
https://stackoverflow.com/questions/32392702/picketlink-deltaspike-security-does-not-work-in-soap-jax-ws-layer-cdi-vs-ej
https://stackoverflow.com/questions/32392702/picketlink-deltaspike-security-does-not-work-in-soap-jax-ws-layer-cdi-vs-ej
https://stackoverflow.com/questions/34315838/resteasy-authorization-design-check-a-user-owns-a-resource
https://stackoverflow.com/questions/34315838/resteasy-authorization-design-check-a-user-owns-a-resource
https://tools.ietf.org/html/rfc6101
https://tools.ietf.org/html/rfc6101
https://scrapy.org
https://stackoverflow.com/questions/1201048/allowing-java-to-use-an-untrusted-certificate-for-ssl-https-connection
https://stackoverflow.com/questions/1201048/allowing-java-to-use-an-untrusted-certificate-for-ssl-https-connection
https://stackoverflow.com/questions/2011407/security-exception-when-loading-web-image-in-jar
https://stackoverflow.com/questions/2011407/security-exception-when-loading-web-image-in-jar
https://projects.spring.io/spring-security/
https://stackoverflow.com/questions/41321176/spring-security-4-xml-configuration-userdetailsservice-authentication-not-workin
https://stackoverflow.com/questions/41321176/spring-security-4-xml-configuration-userdetailsservice-authentication-not-workin
https://stackoverflow.com/questions/35860442/spring-security-jdk-based-proxy-issue-while-using-secured-annotation-on-control
https://stackoverflow.com/questions/35860442/spring-security-jdk-based-proxy-issue-while-using-secured-annotation-on-control

ICSE’18, May 2018, Gothenburg, Sweden Na Meng Stefan Nagy Daphne Yao Wenjie Zhuang Gustavo Arango Argoty

[57] 2017. Spring Security Reference. http://docs.spring.io/spring-security/site/docs/
3.2.4.RELEASE/reference/htmlsingle/#jc-httpsecurity. (2017).

[58] 2017. Spring Security Tutorial. http://www.mkyong.com/tutorials/
spring-security-tutorials/. (2017).

[59] 2017. Spring Security using JBoss <security-domain>. https://stackoverflow.com/
questions/28172056/spring-security-using-jboss-security-domain. (2017).

[60] 2017. SSL Certificate Verification : javax.net.ssl.SSLHandshakeException.
https://stackoverflow.com/questions/25079751/
ssl-certificate-verification-javax-net-ssl-sslhandshakeexception. (2017).

[61] 2017. Ssl handshake fails with unable to find valid certification path
to requested target. https://stackoverflow.com/questions/40977556/
ssl-handshake-fails-with-unable-to-find-valid-certification-path-to-requested-ta.
(2017).

[62] 2017. SSL Socket Connection working even though client is not
sending certificate? https://stackoverflow.com/questions/26761966/
ssl-socket-connection-working-even-though-client-is-not-sending-certificate.
(2017).

[63] 2017. StackOverflow. https://stackoverflow.com. (2017).
[64] 2017. The Webserver I talk to updated its SSL cert and now my

app can’t talk to it. https://stackoverflow.com/questions/5758812/
the-webserver-i-talk-to-updated-its-ssl-cert-and-now-my-app-cant-talk-to-it.
(2017).

[65] 2017. Trusting all certificates using HttpClient over HTTPS. https://stackoverflow.
com/questions/2642777/trusting-all-certificates-using-httpclient-over-https.
(2017).

[66] 2017. Use of ECC in Java SE 1.7. https://stackoverflow.com/questions/24383637/
use-of-ecc-in-java-se-1-7. (2017).

[67] 2017. Using public key from authorized_keys with Java
security. https://stackoverflow.com/questions/3531506/
using-public-key-from-authorized-keys-with-java-security. (2017).

[68] 2017. Web Security Samples. https://github.com/spring-projects/
spring-security-javaconfig/blob/master/samples-web.md#
sample-multi-http-web-configuration. (2017).

[69] 2017. WebSphere Application Server - IBM. http://www-03.ibm.com/software/
products/en/appserv-was. (2017).

[70] 2017. When a TrustManagerFactory is not a TrustManager-
Factory (Java). https://stackoverflow.com/questions/14654639/
when-a-trustmanagerfactory-is-not-a-trustmanagerfactory-java. (2017).

[71] 2017. WildFly. http://wildfly.org. (2017).
[72] 2017. Wildfly 9 security domains won’t work. https://stackoverflow.com/

questions/37425056/wildfly-9-security-domains-wont-work. (2017).
[73] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky. 2016. You

Get Where You’re Looking for: The Impact of Information Sources on Code
Security. In 2016 IEEE Symposium on Security and Privacy (SP). 289–305. https:
//doi.org/10.1109/SP.2016.25

[74] Anton Barua, Stephen W. Thomas, and Ahmed E. Hassan. 2014. What are
developers talking about? An analysis of topics and trends in Stack Overflow.
Empirical Software Engineering 19, 3 (01 Jun 2014), 619–654. https://doi.org/10.
1007/s10664-012-9231-y

[75] Sirapat Boonkrong. 2012. Security of passwords. Information Technology Journal
8, 2 (2012), 112–117.

[76] Luigi Cerulo, Massimiliano Di Penta, Alberto Bacchelli, Michele Ceccarelli, and
Gerardo Canfora. 2015. Irish: A Hidden Markov Model to detect coded informa-
tion islands in free text. Science of Computer Programming 105, Supplement C
(2015), 26 – 43. https://doi.org/10.1016/j.scico.2014.11.017

[77] Alexia Chatzikonstantinou, Christoforos Ntantogian, Georgios Karopoulos, and
Christos Xenakis. 2016. Evaluation of Cryptography Usage in Android Appli-
cations. In Proceedings of the 9th EAI International Conference on Bio-inspired
Information and Communications Technologies (Formerly BIONETICS) (BICT’15).
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunica-
tions Engineering), ICST, Brussels, Belgium, Belgium, 83–90. https://doi.org/10.
4108/eai.3-12-2015.2262471

[78] AnupamDatta, Ante Derek, John C. Mitchell, and Arnab Roy. 2007. Protocol Com-
position Logic (PCL). Electronic Notes in Theoretical Computer Science 172 (2007),
311 – 358. https://doi.org/10.1016/j.entcs.2007.02.012 Computation, Meaning,
and Logic: Articles dedicated to Gordon Plotkin.

[79] Arkajit Dey and Stephen Weis. 2017. Keyczar: A Cryptographic Toolkit.
[80] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. 2013.

An Empirical Study of Cryptographic Misuse in Android Applications. In Pro-
ceedings of the 2013 ACM SIGSAC Conference on Computer & Communications
Security (CCS ’13). ACM, New York, NY, USA, 73–84. https://doi.org/10.1145/
2508859.2516693

[81] Levent Erkök and John Matthews. 2008. Pragmatic Equivalence and Safety
Checking in Cryptol. In Proceedings of the 3rd Workshop on Programming Lan-
guages Meets Program Verification (PLPV ’09). ACM, New York, NY, USA, 73–82.
https://doi.org/10.1145/1481848.1481860

[82] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd
Freisleben, and Matthew Smith. 2012. Why Eve and Mallory Love Android:
An Analysis of Android SSL (in)Security. In Proceedings of the 2012 ACM Confer-
ence on Computer and Communications Security (CCS ’12). ACM, New York, NY,
USA, 50–61. https://doi.org/10.1145/2382196.2382205

[83] Felix Fischer, Konstantin BÂĺottinger, Huang Xiao, Christian Stransky, Yasemin
Acar, Michael Backes, and Sascha Fahl. 2017. Stack Overflow Considered Harm-
ful? The Impact of Copy&Paste on Android Application Security. In 38th IEEE
Symposium on Security and Privacy (S&P ’17) (2017-05-22).

[84] Cory Gackenheimer. 2013. Implementing Security and Cryptography. In Node. js
Recipes. Springer, 133–160.

[85] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and
Vitaly Shmatikov. 2012. The Most Dangerous Code in the World: Validating SSL
Certificates in Non-browser Software. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security (CCS ’12). ACM, New York, NY, USA,
38–49. https://doi.org/10.1145/2382196.2382204

[86] Li Gong and Gary Ellison. 2003. Inside Java(TM) 2 Platform Security: Architecture,
API Design, and Implementation (2nd ed.). Pearson Education.

[87] B. He, V. Rastogi, Y. Cao, Y. Chen, V. N. Venkatakrishnan, R. Yang, and Z. Zhang.
2015. Vetting SSL Usage in Applications with SSLINT. In 2015 IEEE Symposium
on Security and Privacy. 519–534. https://doi.org/10.1109/SP.2015.38

[88] David Lazar, Haogang Chen, Xi Wang, and Nickolai Zeldovich. 2014. Why Does
Cryptographic Software Fail?: A Case Study and Open Problems. In Proceedings
of 5th Asia-Pacific Workshop on Systems (APSys ’14). ACM, New York, NY, USA,
Article 7, 7 pages. https://doi.org/10.1145/2637166.2637237

[89] Yong Li, Yuanyuan Zhang, Juanru Li, and Dawu Gu. 2014. iCryptoTracer: Dynamic
Analysis onMisuse of Cryptography Functions in iOSApplications. Springer Interna-
tional Publishing, Cham, 349–362. https://doi.org/10.1007/978-3-319-11698-3_27

[90] Fred Long. 2005. Software Vulnerabilities in Java. Technical Report CMU/SEI-2005-
TN-044. Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7573

[91] Adrian Mettler, David Wagner, and Tyler Close. 2010. Joe-E: A Security-Oriented
Subset of Java. In Network and Distributed Systems Symposium. Internet Society.
http://www.truststc.org/pubs/652.html

[92] J. C. Mitchell, M. Mitchell, and U. Stern. 1997. Automated Analysis of Crypto-
graphic Protocols Using Mur/Spl Phi/. In Proceedings of the 1997 IEEE Symposium
on Security and Privacy (SP ’97). IEEE Computer Society, Washington, DC, USA,
141–. http://dl.acm.org/citation.cfm?id=882493.884384

[93] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. 2014. This POODLE bites:
exploiting the SSL 3.0 fallback. PDF online (2014), 1–4.

[94] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. 2016. Jumping Through
Hoops: Why Do Java Developers Struggle with Cryptography APIs?. In Proceed-
ings of the 38th International Conference on Software Engineering (ICSE ’16). ACM,
New York, NY, USA, 935–946. https://doi.org/10.1145/2884781.2884790

[95] Scott Oaks. 1998. Java Security. O’Reilly & Associates, Inc., Sebastopol, CA, USA.
[96] Lucky Onwuzurike and Emiliano De Cristofaro. 2015. Danger is My Middle

Name: Experimenting with SSL Vulnerabilities in Android Apps. In Proceedings
of the 8th ACM Conference on Security & Privacy in Wireless and Mobile Networks
(WiSec ’15). ACM, New York, NY, USA, Article 15, 6 pages. https://doi.org/10.
1145/2766498.2766522

[97] Muhammad Sajidur Rahman. 2016. An empirical case study on Stack Overflow to
explore developers’ security challenges. Master’s thesis. Kansas State University.

[98] Fahmida Y. Rashid. 2017. Library misuse exposes leading Java plat-
forms to attack. http://www.infoworld.com/article/3003197/security/
library-misuse-exposes-leading-java-platforms-to-attack.html. (2017).

[99] Shao Shuai, Dong Guowei, Guo Tao, Yang Tianchang, and Shi Chenjie. 2014.
Modelling Analysis and Auto-detection of Cryptographic Misuse in Android
Applications. In Proceedings of the 2014 IEEE 12th International Conference on
Dependable, Autonomic and Secure Computing (DASC ’14). IEEE Computer Society,
Washington, DC, USA, 75–80. https://doi.org/10.1109/DASC.2014.22

[100] E. Smith and D. L. Dill. 2008. Automatic Formal Verification of Block Cipher
Implementations. In 2008 Formal Methods in Computer-Aided Design. 1–7. https:
//doi.org/10.1109/FMCAD.2008.ECP.10

[101] J Steven. 2017. Password storage cheat sheet. (2017). https://www.owasp.org/
index.php/Password_Storage_Cheat_Sheet

[102] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov.
2017. The first collision for full SHA-1. IACR Cryptology ePrint Archive 2017
(2017), 190.

[103] Veracode. 2017. STATE OF SOFTWARE SECURITY.
https://www.veracode.com/sites/default/files/Resources/Reports/state-of-
software-security-volume-7-veracode-report.pdf. (2017).

[104] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. 2004. Collisions for
Hash Functions MD4, MD5, HAVAL-128 and RIPEMD. IACR Cryptology ePrint
Archive 2004 (2004), 199.

[105] Xin-Li Yang, David Lo, Xin Xia, Zhi-Yuan Wan, and Jian-Ling Sun. 2016. What
Security Questions Do Developers Ask? A Large-Scale Study of Stack Overflow
Posts. Journal of Computer Science and Technology 31, 5 (01 Sep 2016), 910–924.

http://docs.spring.io/spring-security/site/docs/3.2.4.RELEASE/reference/htmlsingle/#jc-httpsecurity
http://docs.spring.io/spring-security/site/docs/3.2.4.RELEASE/reference/htmlsingle/#jc-httpsecurity
http://www.mkyong.com/tutorials/spring-security-tutorials/
http://www.mkyong.com/tutorials/spring-security-tutorials/
https://stackoverflow.com/questions/28172056/spring-security-using-jboss-security-domain
https://stackoverflow.com/questions/28172056/spring-security-using-jboss-security-domain
https://stackoverflow.com/questions/25079751/ssl-certificate-verification-javax-net-ssl-sslhandshakeexception
https://stackoverflow.com/questions/25079751/ssl-certificate-verification-javax-net-ssl-sslhandshakeexception
https://stackoverflow.com/questions/40977556/ssl-handshake-fails-with-unable-to-find-valid-certification-path-to-requested-ta
https://stackoverflow.com/questions/40977556/ssl-handshake-fails-with-unable-to-find-valid-certification-path-to-requested-ta
https://stackoverflow.com/questions/26761966/ssl-socket-connection-working-even-though-client-is-not-sending-certificate
https://stackoverflow.com/questions/26761966/ssl-socket-connection-working-even-though-client-is-not-sending-certificate
https://stackoverflow.com
https://stackoverflow.com/questions/5758812/the-webserver-i-talk-to-updated-its-ssl-cert-and-now-my-app-cant-talk-to-it
https://stackoverflow.com/questions/5758812/the-webserver-i-talk-to-updated-its-ssl-cert-and-now-my-app-cant-talk-to-it
https://stackoverflow.com/questions/2642777/trusting-all-certificates-using-httpclient-over-https
https://stackoverflow.com/questions/2642777/trusting-all-certificates-using-httpclient-over-https
https://stackoverflow.com/questions/24383637/use-of-ecc-in-java-se-1-7
https://stackoverflow.com/questions/24383637/use-of-ecc-in-java-se-1-7
https://stackoverflow.com/questions/3531506/using-public-key-from-authorized-keys-with-java-security
https://stackoverflow.com/questions/3531506/using-public-key-from-authorized-keys-with-java-security
https://github.com/spring-projects/spring-security-javaconfig/blob/master/samples-web.md#sample-multi-http-web-configuration
https://github.com/spring-projects/spring-security-javaconfig/blob/master/samples-web.md#sample-multi-http-web-configuration
https://github.com/spring-projects/spring-security-javaconfig/blob/master/samples-web.md#sample-multi-http-web-configuration
http://www-03.ibm.com/software/products/en/appserv-was
http://www-03.ibm.com/software/products/en/appserv-was
https://stackoverflow.com/questions/14654639/when-a-trustmanagerfactory-is-not-a-trustmanagerfactory-java
https://stackoverflow.com/questions/14654639/when-a-trustmanagerfactory-is-not-a-trustmanagerfactory-java
http://wildfly.org
https://stackoverflow.com/questions/37425056/wildfly-9-security-domains-wont-work
https://stackoverflow.com/questions/37425056/wildfly-9-security-domains-wont-work
https://doi.org/10.1109/SP.2016.25
https://doi.org/10.1109/SP.2016.25
https://doi.org/10.1007/s10664-012-9231-y
https://doi.org/10.1007/s10664-012-9231-y
https://doi.org/10.1016/j.scico.2014.11.017
https://doi.org/10.4108/eai.3-12-2015.2262471
https://doi.org/10.4108/eai.3-12-2015.2262471
https://doi.org/10.1016/j.entcs.2007.02.012
https://doi.org/10.1145/2508859.2516693
https://doi.org/10.1145/2508859.2516693
https://doi.org/10.1145/1481848.1481860
https://doi.org/10.1145/2382196.2382205
https://doi.org/10.1145/2382196.2382204
https://doi.org/10.1109/SP.2015.38
https://doi.org/10.1145/2637166.2637237
https://doi.org/10.1007/978-3-319-11698-3_27
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7573
http://www.truststc.org/pubs/652.html
http://dl.acm.org/citation.cfm?id=882493.884384
https://doi.org/10.1145/2884781.2884790
https://doi.org/10.1145/2766498.2766522
https://doi.org/10.1145/2766498.2766522
http://www.infoworld.com/article/3003197/security/library-misuse-exposes-leading-java-platforms-to-attack.html
http://www.infoworld.com/article/3003197/security/library-misuse-exposes-leading-java-platforms-to-attack.html
https://doi.org/10.1109/DASC.2014.22
https://doi.org/10.1109/FMCAD.2008.ECP.10
https://doi.org/10.1109/FMCAD.2008.ECP.10
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

Secure Coding Practices in Java: Challenges and Vulnerabilities ICSE’18, May 2018, Gothenburg, Sweden

https://doi.org/10.1007/s11390-016-1672-0
[106] William Zeller and Edward W Felten. 2008. Cross-Site Request Forgeries: Ex-

ploitation and prevention. https://www.cs.utexas.edu/~shmat/courses/library/
zeller.pdf. (2008).

https://doi.org/10.1007/s11390-016-1672-0
https://www.cs.utexas.edu/~shmat/courses/library/zeller.pdf
https://www.cs.utexas.edu/~shmat/courses/library/zeller.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Java Platform Security
	2.2 Java EE Security
	2.3 Other Third-Party Security Frameworks

	3 Methodology
	4 Major Findings
	4.1 Common Concerns in Security Coding
	4.2 Common Programming Challenges
	4.3 Common Security Vulnerabilities

	5 Related Work
	5.1 Analyzing Security Vulnerabilities
	5.2 Detecting Security Vulnerabilities
	5.3 Preventing Security Vulnerabilities

	6 Our Recommendations
	7 Threats to Validity
	8 conclusion
	References

