Fine-grained and Accurate
Source Code Differencing

4/13/18

Problem Statement

+ Existing approaches usually represent
code changes or edit operations as add
line or delete line actions

* Such representations are not precise

—E.g., code move or update is not properly
represented

Contributions

* GumTree—a novel efficient AST
differencing algorithm that includes
move actions

* An automated evaluation of GumTree

+ A manual evaluation to compare
GumTree vs. textual diff

* An automated evaluation to compare
6umTree vs. ?

The GumTree Algorithm

+ 1. A greedy top-down algorithm to find
isomorphic sub-trees of decreasing
height. Mappings are established
between the nodes of these isomorphic
subtrees. They are called anchors
mappings.

The GumTree Algorithm (cont'd)

+ 2. A bottom-up algorithm where two
nodes match (called a container
mapping) if their descendants (children
of the nodes, and their children, and so
on) include a large number of common
anchors. When two nodes match, we
finally apply an optimal algorithm to
search for additional mappings (called
recovery mappings) among their
descendants.

The GumTree Algorithm (cont'd)

+ 3. Recovery Mappings: to find additional
mappings between leaf nodes and similar
nodes

* 4, Generate edit operations for the

unmatched nodes:
—Insert
— Delete
— Update
— Move




Test.java: destination

= = = = 1) Top-down

------- 2) Bottom-up

3) Recovery’

Bottom-Up Phase

+ Search for container mappings, that are
established when two nodes have a
significant number of matching
descendants

, _ 2x|{t1€s(t1)|(t1,t2)EM}
dlce(h,t%M) = Ts(t1)1+|3(1t2§‘

4/13/18

Top-Down Phase

+ Start with the roots and check if they
are isomorphic or identical. If not, the

children nodes are then tested
* To identify the unchanged part
+ Implementation

— By hardcoding subtrees, the isomorphism

test's complexity is O(1)

— The worst-case complexity is O(h"2)

Recovery Mappings

* Given two trees, find their additional
mappings between the descendants,

— remove the matched descendants,

and

—apply an optimized algorithm to find a
shortest edit script without move actions

ﬂrchi‘recfu[e

filel java

- Parser: Java, JavaScript, R, and C

- Mappings: GumTree, ChangeDistiller, XYDiff, RTED

- Output: XML representation of AST, web-based view
of an edit script, XML representation of an edit

script

Evaluation

Comparison between
GumTree, textual

diff, and RTED

— The median of
parsing time is 10

— Computing an edit
script is only slightly _
slower than just 7 i
parsing the files i
(median at 18 for - — = H
Jenkins and 30 for
JQuery

10000
L

1000
L

RTED




4/13/18

Manual Evaluation Automatic Evaluation

Full (3/3) Majority (2/3)

.

GT does good job 122 137 Mor‘e o GT better CD better Equiv.
#1  GT does not good job 3 3 - 2 Mappings 4007 (31.32%) 542 (4.24%) 8243 (64.44%)
Neutral 0 1 mGTChZS ~  ES size 1938 (38.6%) 112 (3.22%) 7442 (58.18%)

GT botter 2 6 better GT better CD better Equiv.
#2  Diff better 3 12 __ Mappings 8378 (65.49%) 203 (1.59%) 4211 (32.92%)
Equivalent 15 61 O ES size 10358 (80.97%) 175 (1.37%) 2259 (17.66%)

a GT better RTED better Equiv.
. : f Mappings 2806 (21.94%) 1234 (9.65%) 12%)
Table 1: Agreements of the manual inspection of panp 3020 (23.61%) 2193 (17.14%) 0.25%)

the 144 transactions by three raters for Question #1
(top) and Question #2 (bottom). Table 2: Number of cases where GumTree is better
(resp. worse and equivalent) than ChangeDistiller (top,
middle) and RTED (bottom) for 2 metrics, number

M GUI’\’\TT‘CCIS OUTPLI"’ iS SOmCTImCS beﬁ'el" Than of mappings avm:l edit script size (ES size)., at t%)e
TeXTUC(l diff (i]i(i)g:?:r:l)z.inty (top) and JDTG granularity (mid-

Automatic Evaluation (cont'd)

* 6umTree generates smaller edit scripts
in most cases than RTED and
ChangeDistiller
— 130 elements include move-only actions

GT only move op GT other op

CD only move op 7 1
CD other op 52 12662

Table 3: Comparison of the number of move oper-
ations from GumTree and ChangeDistiller for 12792 file
pairs to be compared.




