Fault Localization

Fault Localization

+ Debugging software is an expensive and
mostly manual process

+ Of all debugging activities, locating the
faults, or fault localization, is the most
challenging one

« Approaches have been investigated to
help automate fault localization

Typical Fault Localization Techniques

* Tarantula

+ Set Union & Set Intersection
* Nearest Neighbor

* Cause Transitions

What Is the Fault in the Following
Buggy Program?

int mid(int x, inty, int z) {
int m;
m=z
if (y <2){
if (x<y)m=y:
elseif (x<z)m=y; // should be m = x;
Yelse {
if (x>y)m=y;
elseif (x>z)m=x;

} return m;

}

Tarantula: Coverage-based Fault
Localization

Statements

if (y < z) {
if (x < y)

m=y;

else if (x < z)
m = y; //should be x
} else {

if (x > y)

m=y;

else if (x > z)

m = x; }

return m;

Approach

* Insight
— Entities in a program that are primarily
executed by failed test cases are more
likely to be faulty than those that are
primarily executed by passed test cases

* Solution
—Ranking based on suspiciousness
fail(s)/ totalfail

Suspicious(s) = — -
fail(s)/ totalfail + pass(s)/ totalpass

4/7/18

Tarantula

Statements

if (y < z) {
if (x < y)

else if (x < z)
m = y; //should be x
} else {

(1/1)/(1/1+1/5)

T

if (x > y) o]
m=y; 0
else if (x > z) 0
m=x; } o
return m; 05

Pass |Pass |Pass |Pass |Pass |Fail

Continuous Coloring

* Color of a statement is:
Yipassed(s)
Ypassed(s) + %failed(s)

color(s) = low color (red)+ *color range

* Brightness of a statement is:

bright(s) = max(% passed(s),% failed(s))

Tarantula Display

Evaluation

RQ1: How often does Tarantula color
the faulty statements in a program red
or in a reddish color?

RQ2: How often does Tarantula color

nonfaulty statements in a program red
or in a reddish color?

Data Set

* Space program written in C
» 6218 LOC (executable)

+ 13585 test cases
— Generated test cases until the set contains
at least 30 test cases that exercise nearly
every statement and edge
— Extracted 1000 randomly sized generated,
near-decision-adequate test suites from
this test pool

Single-fault Versions (20 versions)

100%]

>4

-2

1 2 3 4 5 6 7 8 9 1001 1B M 15 16 1718 19 0

Program version including single fault (fault number)

Figure 5: Resulting color of the faulty statements across all test suites for 20 versions of Space.

4/7/18

708 9 0 M DB WIS 16 711N
Program version including single fault (fault aumber)

. N N . L
Figure 6: Resulting color of the nonfaulty statements across all test suites for 20 versions ofSpace

Multiple fault (40 versions)

2faults - | i 3 fenlfs
“IAAMA “THWE M No. of faulty
- - statementsin
. Sfoults = I each partifion
- - for all 5 faults
4faults -

3 faults

- a & 2faults

Set Union & Set Intersection [3]

intersection of
slices A and B

Slice-based Fault

Localization

— A dynamic slice is the
set of statements
which do affect the
value of the output

— Dice: the set
difference of two slices!

—dice (A - B) is effective
to isolate bug b

. },No. of non
numbers - faulty
5 faults statements in
- each partition|
- for all § faults
4 faults
15

* Set Union
Einitia = Ef — U E,
. pEP
* Set Intersection
Einitial = ﬂ E, — Ef

* What is the insigpfnL behind each
formula?

Set Union & Set Intersection

3,3,5 (1,23 |3,21 |55,5 |53,4 | 21,3

Statements

if (y <2) A
if (x < y)

else if (x < z)
m = y: //should be x
} else {

if (x > y)
0(m=yY;

11| else if (x > z)

© N U AW N

m = x; }

return m;

Pass | Pass |Pass |Pass |Pass | Fail

4/7/18

Nearest Neighbor [4]

+ Spectra-based Fault Localization

— Spectrum: profiling data that shows the
number of times each program line is
executed

— Given a set of passing tests and a failing
test F, find the passing test P, which has
the most similar spectrum as F

— Calculate the distance metric

Two Variants

* NN/perm
— Frequency-marked statements
— Sort statements based on frequency
— Ulam edit distance
- E.g., Dist([a, b, ¢, d], [a, ¢, d, b]) = 1 (move)
NN/binary
—0-or-1 mark for each statement
—No frequency is considered
— Set subtraction is used to calculate distance

Nearest Neighbor

Statements

if (y < 2z) {
if (x < y)

else if (x < z)
m = y; //should be x
} else {

if (x > y)

© o N LA W N

0(m=y;
11| else if (x > z)

m = x; }

return m;

Cause-Transitions [2]

Leverage delta debugging to isolate
failure-inducing variable values at
specific program locations

Identify the transition points between
different failure-inducing variable
values

Consider the transition points as bug
locations

Delta Debugging (DD) [5]

* Problem Statement

- Yesterday, my program worked. Today, it
does not. Why?

GDB (GNU Project Debugger) 4.16 GDB (GNU Project Debugger) 4.17

R= R=
cl 2 3 c4 [23 _J
e e 0 o »
Testing Regression Testing

Definitions

* Configuration: the set of all applied

changes C={A,A,,...,A,}
—c C C represents a subset of changes

+ Test: the functionc 2> {X, /,?} to

determine whether a configuration ¢
leads to failure, success, or unresolved
outcome of regression testing

4/7/18

How to Find the Minimum Failing-
Inducing Changes?

* Ndive approach

— Brute-force search: too expensive
+ Efficient approach

— Delta debugging: Binary search

Insight

* By finding the minimum set of changes
whose application fails the test, Delta

Debugging identifies bug-inducing

changes

Search for Single Failure-Inducing
Change

+ Suppose there are 8 changes with the
7 is the cause. How do you use binary
search to find it?

Conceptual Solution

1 1234 v
2 5678 X
3 56 v
4 78 X
5 7 X

How Does DD Localize Failure-
Inducing Variable Values?

Passing state Failing state
Mixed state
v b 4
Test outcome ?

Figure 2: Narrowing down state differences. By assessing
whether a mixed state results in a passing (v), a failing (X), or
an unresolved (?) outcome, Delta Debugging isolates a relevant
difference.

Cause-Transitions

Statements 3,35 1,23 [3,21 [555 [534 [213

1| int m; XY,
2 Step 1:Line1: 3,3,3 ¢
3[if (y < 2) { 2,1,5 X
4] if (x < y) 2,3,5 v
5|m=y; 3,1,5 X
6| else if (x < z) X, Y,z,m
7" = y: //should be x Step 2: Line 13:3,3,3,1 X
8|} else { :’ :' 3,3v
9| if (x > y) . »3,5,1X

— Step 3: Line4: 3,3,3,3v
o|m = ys 2,1,5,5X
11| else if (x > z) 235 5¢
L 3,1,5,5X
13| return m; Step 4: Line 6: 3,3,3,3v

Pass 2,1,5,5X |Fail |*

4/7/18

Cause-Transitions

Statements 3,35 1,23 [321 [555[534 [21,3

1] dnt m; 2,3,5,5¢

2 3,1,55X

3|if (y < 2) { Step 5: Line7: 3,3,3,1 X
4 if (x < y) 3,3,3,3V
5|m=1y; 3,3,5,1X

else if (x < z) X .
6 Line 7 is the
7| M =y://should be x .

! fault location!

8|} else {

9| if (x > y)
0|m=y;
11| else if (x > z)
12|m=x; }
13 | return mj

Pass m i

Evaluation

+ Siemens suite

—7 programs, 132 fault versions, 21,631 test
suites desighed to expose the faults

— 122 versions are usable by the authors
— Each version contains exactly one fault

— Each fault may span multiple statements or
even functions

Evaluation Method

* Basic Idea
—Imagine an “ideal” debugger or a perfect
programmer examines the ranked list of
bug locations
— The fewer locations/statements examined
before the actual location, the higher score
the report/tool gets
* Tarantula: go through the ranked list
+ Other tools: PDG-based location examination

PDG-Based Evaluation Method [6]

* Given a reported location, do breadth-
first search of Program Dependency
Graph (PDG)

— Terminate the search when a real fault is
found

— Score is proportional to the unexplored
part of the PDG

* Score near 1.0 means the No. 1 reported
location is the correct one.

An Example [6]

12 total nodes in PDG

An Example [6]

12 total nodes in PDG

Report

Fault

4/7/18

An Example [6]

Report + 1 Layer BFS

Fault

An Example [6]

12 total nodes in PDG

Report + 1 Layer BFS
% STOP: Real fault discovered

An Example [6]

12 total nodes in PDG
8 of 12 nodes not covered by
BFS: score =8/12 ~=0.67.

Report + 1 Layer BFS
STOP: Real fault discovered

Fault

An Example [6]

Report
12 total nodes in PDG

Fault

An Example [6]

Report + 1 layer BFS

12 total nodes in PDG

Fault

An Example [6]

Report + 2 layers BFS

12 total nodes in PDG

Fault

4/7/18

An Example [6]

Report + 3 layers BFS

12 total nodes in PDG

Fault

An Example [6]

Report + 4 layers BFS
STOP: Real fault discovered
12 total nodes in PDG

Fault

An Example [6]

Report + 4 layers BFS

12 total nodes in PDG
0 of 12 nodes not covered by
BFS: score =0/12 ~=0.00.

e

Limitations [6]

+ Isn't a misleading report worse than an
empty report?
* Nobody really searches a PDG like that!

Evaluation Results

Comparison of fault localization techniques

Tarantula ——

NN/perm ---x---

NN/binary -
® CT &
c CT/relevant —-m-
2 CTlinfected --o--
3 intersection -~ -
= union &
53
R

% of program that need not be examined ('Score’)

Figure 2: Cq ison of the i of each

Evaluation Results

Table 3: Average time expressed in seconds.

Program Tarantula Tarantula Cause Tran-
(computa- (including sitions
tion only) 1/0)
print_tokens | 0.0040 68.96 2590.1
print_tokens2 | 0.0037 50.50 6556.5
replace 0.0063 75.90 3588.9
schedule 0.0032 30.07 1909.3
schedule2 0.0030 30.02 7741.2
tcas 0.0025 12.37 184.8
tot_info 0.0031 8.51 521.4

4/7/18

Reference

11J. A. Jones, and M. J. Harrold, Empirical Evaluation of the

arantula Automatic Fault-Localization Technique, ASE '05
LZ] H. Cleve, and A. Zeller, Locating Causes of Program
ailures, ICSE '05

3]1H. Agr‘awal, J. Horgan, S. London, and W. Wong. Fault
,9o5caliza ion Using Execution Slices and Dataflow Tests, SRE
[4] M. Renieris and S. Reiss. Fault localization with nearest
neighbor queries. ASE '03
[5] A. Zeller. Yesterday, My Program Worked. Today, It Does
Not. Why?, FSE '99

6] A. D. Groce, Testing and Debugging: Causality and Fault
ocalization, http://www.cs.cmu.edu/~agroce/C5119/16.ppt.

4/7/18

