
4/7/18	

1	

Fault Localization

Fault Localization

•  Debugging software is an expensive and
mostly manual process

•  Of all debugging activities, locating the
faults, or fault localization, is the most
challenging one

•  Approaches have been investigated to
help automate fault localization

2	

Typical Fault Localization Techniques

•  Tarantula
•  Set Union & Set Intersection
•  Nearest Neighbor
•  Cause Transitions

3	

What Is the Fault in the Following
Buggy Program?

int mid(int x, int y, int z) {
 int m;
 m= z;
 if (y < z) {
 if (x < y) m = y;
 else if (x < z) m = y;
} else {
 if (x > y) m = y;
 else if (x > z) m = x;
 }
 } return m;
}

// should be m = x;

4	

Tarantula: Coverage-based Fault
Localization How to do Fault Localization?How�to�do�Fault�Localization?

Statements 3,3,5 1,2,3 3,2,1 5,5,5 5,3,4 2,1,3
int m;

m�=�z;

if (y�<�z)�{

if (x�<�y)(y)

m�=�y;

else if (x�<�z)

m x;m�=�x;

}�else {

if (x�>�y)

m�=�y;

else if (x�>�z)

m�=�x;�}}

return m;

Pass Pass Pass Pass Pass Fail 55	

y; //should be x

Approach

•  Insight
– Entities in a program that are primarily

executed by failed test cases are more
likely to be faulty than those that are
primarily executed by passed test cases

•  Solution
– Ranking based on suspiciousness

Suspicious(s) = fail(s) / totalfail
fail(s) / totalfail + pass(s) / totalpass

6	

4/7/18	

2	

Tarantula

(1/1)/(1/1+5/5)	

(1/1)/(1/1+1/5)	

7	

y; //should be x

Continuous Coloring

8	

		

•  Color of a statement is:

•  Brightness of a statement is:

Tarantula Display

9	

Evaluation

•  RQ1: How often does Tarantula color
the faulty statements in a program red
or in a reddish color?

•  RQ2: How often does Tarantula color
nonfaulty statements in a program red
or in a reddish color?

10	

Data Set

•  Space program written in C
•  6218 LOC (executable)
•  13585 test cases
– Generated test cases until the set contains

at least 30 test cases that exercise nearly
every statement and edge

– Extracted 1000 randomly sized generated,
near-decision-adequate test suites from
this test pool

11	

Single-fault Versions (20 versions)

12	

4/7/18	

3	

ß

13	

Multiple fault (40 versions)

14	

15	

Set Union & Set Intersection [3]

•  Slice-based Fault
Localization
– A dynamic slice is the

set of statements
which do affect the
value of the output

– Dice: the set
difference of two slices

– dice (A – B) is effective
to isolate bug b

Successful
run

Failing
run

16	

Formulas

17	

•  Set Union

•  Set Intersection

•  What is the insight behind each
formula?

Set Union & Set Intersection

18	

How to do Fault Localization?How�to�do�Fault�Localization?
Statements 3,3,5 1,2,3 3,2,1 5,5,5 5,3,4 2,1,3
int m;

m�=�z;

if (y�<�z)�{

if (x�<�y)(y)

m�=�y;

else if (x�<�z)

m x;m�=�x;

}�else {

if (x�>�y)

m�=�y;

else if (x�>�z)

m�=�x;�}}

return m;

Pass Pass Pass Pass Pass Fail 5

1	
2	

3	

4	
5	

6	
7	
8	

9	

10	
11	
12	

13	

Nothing
is found!

y; //should be x

4/7/18	

4	

Nearest Neighbor [4]

•  Spectra-based Fault Localization
– Spectrum: profiling data that shows the

number of times each program line is
executed

– Given a set of passing tests and a failing
test F, find the passing test P, which has
the most similar spectrum as F

– Calculate the distance metric

19	

Two Variants

•  NN/perm
– Frequency-marked statements
– Sort statements based on frequency
– Ulam edit distance
•  E.g., Dist([a, b, c, d], [a, c, d, b]) = 1 (move)

•  NN/binary
– 0-or-1 mark for each statement
– No frequency is considered
– Set subtraction is used to calculate distance

20	

Nearest Neighbor

21	

How to do Fault Localization?How�to�do�Fault�Localization?
Statements 3,3,5 1,2,3 3,2,1 5,5,5 5,3,4 2,1,3
int m;

m�=�z;

if (y�<�z)�{

if (x�<�y)(y)

m�=�y;

else if (x�<�z)

m x;m�=�x;

}�else {

if (x�>�y)

m�=�y;

else if (x�>�z)

m�=�x;�}}

return m;

Pass Pass Pass Pass Pass Fail 5

1	
2	

3	

4	
5	

6	
7	
8	

9	

10	
11	
12	

13	

Nothing
is found!

y; //should be x

Cause-Transitions [2]

•  Leverage delta debugging to isolate
failure-inducing variable values at
specific program locations

•  Identify the transition points between
different failure-inducing variable
values

•  Consider the transition points as bug
locations

22	

Delta Debugging (DD) [5]

•  Problem Statement
– Yesterday, my program worked. Today, it

does not. Why?

23	

GDB	(GNU	Project	Debugger)	4.16	 GDB	(GNU	Project	Debugger)	4.17	

c1	 c2	 …	c3	 c4	 cx	

Testing	 Regression	Testing	

Definitions

24	

•  Configuration: the set of all applied
changes
–  represents a subset of changes

•  Test: the function c à {✗, ✓, ?} to
determine whether a configuration c
leads to failure, success, or unresolved
outcome of regression testing

C = {Δ1,Δ2,...,Δn}
c ⊆C

4/7/18	

5	

How to Find the Minimum Failing-
Inducing Changes?

•  Naïve approach
– Brute-force search: too expensive

•  Efficient approach
– Delta debugging: Binary search

25	

Insight

•  By finding the minimum set of changes
whose application fails the test, Delta
Debugging identifies bug-inducing
changes

26	

Search for Single Failure-Inducing
Change

•  Suppose there are 8 changes with the
7th is the cause. How do you use binary
search to find it?

27	

Conceptual Solution

28	

Step Configuration test
1 1 2 3 4 ✔
2 5 6 7 8 ✗
3 5 6 ✔
4 7 8 ✗
5 7 ✗

How Does DD Localize Failure-
Inducing Variable Values?

29	

Cause-Transitions

30	

How to do Fault Localization?How�to�do�Fault�Localization?
Statements 3,3,5 1,2,3 3,2,1 5,5,5 5,3,4 2,1,3
int m;

m�=�z;

if (y�<�z)�{

if (x�<�y)(y)

m�=�y;

else if (x�<�z)

m x;m�=�x;

}�else {

if (x�>�y)

m�=�y;

else if (x�>�z)

m�=�x;�}}

return m;

Pass Pass Pass Pass Pass Fail 5

1	
2	

3	

4	
5	

6	
7	
8	

9	

10	
11	
12	

13	

	 	 	 	x,	y,	z		
Step	1:	Line	1:			3,	3,	3					✔	
		 	 	 								2,	1,	5					✗	
																													2,	3,	5				✔	
																													3,	1,	5				✗	
																												x,	y,	z,	m	
Step	2:	Line	13:	3,	3,	3,	1✗	
																													3,	3,	3,	3✔	
																													3,	3,	5,	1✗	
Step	3:	Line	4:				3,	3,	3,	3✔	

	 	 	 	2,	1,	5,	5✗	
	 	 	 	2,	3,	5,	5✔	
	 	 	 	3,	1,	5,	5✗	

Step	4:	Line	6:			3,	3,	3,	3✔	
																												2,	1,	5,	5✗	

y; //should be x

4/7/18	

6	

Cause-Transitions

31	

How to do Fault Localization?How�to�do�Fault�Localization?
Statements 3,3,5 1,2,3 3,2,1 5,5,5 5,3,4 2,1,3
int m;

m�=�z;

if (y�<�z)�{

if (x�<�y)(y)

m�=�y;

else if (x�<�z)

m x;m�=�x;

}�else {

if (x�>�y)

m�=�y;

else if (x�>�z)

m�=�x;�}}

return m;

Pass Pass Pass Pass Pass Fail 5

1	
2	

3	

4	
5	

6	
7	
8	

9	

10	
11	
12	

13	

	 	 								2,	3,	5,	5✔	
	 	 	 	3,	1,	5,	5✗	

Step	5:	Line	7:			3,	3,	3,	1	✗	
	 	 								3,	3,	3,	3✔	

																													3,	3,	5,	1✗	
	
	
	
	
	
	
	
	
	
	

y; //should be x
Line	7	is	the		
fault	location!	

Evaluation

•  Siemens suite
– 7 programs, 132 fault versions, 21,631 test

suites designed to expose the faults
– 122 versions are usable by the authors
– Each version contains exactly one fault
– Each fault may span multiple statements or

even functions

32	

Evaluation Method

•  Basic Idea
– Imagine an “ideal” debugger or a perfect

programmer examines the ranked list of
bug locations

– The fewer locations/statements examined
before the actual location, the higher score
the report/tool gets
•  Tarantula: go through the ranked list
•  Other tools: PDG-based location examination

33	

PDG-Based Evaluation Method [6]

•  Given a reported location, do breadth-
first search of Program Dependency
Graph (PDG)
– Terminate the search when a real fault is

found
– Score is proportional to the unexplored

part of the PDG
•  Score near 1.0 means the No. 1 reported

location is the correct one.

34	

An Example [6]

35	

12	total	nodes	in	PDG	

An Example [6]

36	

12	total	nodes	in	PDG	

Fault	

Report	

4/7/18	

7	

An Example [6]

37	
Fault	

Report	+	1	Layer	BFS	

An Example [6]

38	

12	total	nodes	in	PDG	

Report	+	1	Layer	BFS	
STOP:		Real	fault	discovered	

An Example [6]

39	

12	total	nodes	in	PDG	
8	of	12	nodes	not	covered	by	
BFS:		score	=	8/12	~=	0.67.	

Fault	

Report	+	1	Layer	BFS	
STOP:		Real	fault	discovered	

An Example [6]

40	

12	total	nodes	in	PDG	

Fault	

Report	

An Example [6]

41	

12	total	nodes	in	PDG	

Fault	

Report	+	1	layer	BFS	

An Example [6]

42	

12	total	nodes	in	PDG	

Fault	

Report	+	2	layers	BFS	

4/7/18	

8	

An Example [6]

43	

12	total	nodes	in	PDG	

Fault	

Report	+	3	layers	BFS	

An Example [6]

44	

12	total	nodes	in	PDG	

Fault	

Report	+	4	layers	BFS	
STOP:		Real	fault	discovered	

An Example [6]

45	

Report	+	4	layers	BFS	

12	total	nodes	in	PDG	
0	of	12	nodes	not	covered	by	
BFS:		score	=	0/12	~=	0.00.	

Limitations [6]

•  Isn’t a misleading report worse than an
empty report?

•  Nobody really searches a PDG like that!

46	

Evaluation Results

47	

Evaluation Results

48	

4/7/18	

9	

Reference

49	

[1] J. A. Jones, and M. J. Harrold, Empirical Evaluation of the
Tarantula Automatic Fault-Localization Technique, ASE ‘05
[2] H. Cleve, and A. Zeller, Locating Causes of Program
Failures, ICSE ’05
[3] H. Agrawal, J. Horgan, S. London, and W. Wong. Fault
Localization Using Execution Slices and Dataflow Tests, SRE
’95
[4] M. Renieris and S. Reiss. Fault localization with nearest
neighbor queries. ASE ’03
[5] A. Zeller. Yesterday, My Program Worked. Today, It Does
Not. Why?, FSE ’99
[6] A. D. Groce, Testing and Debugging: Causality and Fault
Localization, ‪http://www.cs.cmu.edu/~agroce/CS119/l6.ppt‪.‬

