Program Dynamic Analysis

3/15/18

Overview

+ Dynamic Analysis
+ JVM & Java Bytecode [2]

+ A Java bytecode engineering library:
ASM [1]

What is dynamic analysis? [3]

* The investigation of the properties of a
running software system over one or
more executions

Has anyone done dynamic analysis? [3]

+ Loggers
+ Debuggers
Profilers

Why dynamic analysis? [3]

+ Gap between run-time structure and
code structure in OO programs

Objects Interactions Classes Relationships

classi
The The
Concrete - Abstract
objectify

Program Execution Source Code
Trying to understand one [structure] from the other is like trying to

understand the dynamism of living ecosystems from the static taxonomy of
plants and animals, and vice-versa.

-- Erich Gamma et al., Design Patterns

Why dynamic analysis?

* Collect runtime execution information
—Resource usage, execution profiles
* Program comprehension
— Find bugs in applications, identify hotspots
* Program transformation
— Optimize or obfuscate programs
— Insert debugging or monitoring code
— Modify program behaviors on the fly

How to do dynamic analysis?

* Instrumentation
— Modify code or runtime to monitor specific
components in a system and collect data
— Instrumentation approaches
* Source code modification
* Byte code modification
+ VM modification

+ Data analysis

3/15/18

A Running Example

* Method call instrumentation

— Given a program's source code, how do you
modify the code to record which method is
called by main() in what order?
public class Test {

public static void main(String[] args) {
if (args.length == 0) return;
if (args.length % 2 == 0) printEven();
else printOdd();
}
public static void printEven() {System.out.printIn("Even");}

}

public static void printOdd() {System.out.printin(*Odd"):}

Source Code Instrumentation

* Call site instrumentation

— Call print(...) before each actual method call
* Method entry instrumentation

— Call print(...) at entry of each method

Method Entry Instrumentation

public class Test {
public static void main(String[] args) {
if (args.length == 0) return;
if (args.length % 2 == 0) printEven();
else printOdd();
}
public static void printEven() {
System.out.printin("printEven() is called");
System.out.printin("Even");
}
public static void printOdd() {
System.out.printin(*printOdd() is called");
System.out.printin(*Odd");
}
}

Call Site Instrumentation

public class Test {
public static void main(String[] args) {
if (args.length == 0) return;
if (args.length % 2 == 0) {
System.out.printin("printEven() is called"):
printEven();
}else {
System.out.printin(*printOdd() is called");
printOdd():
}
}
public static void printEven() {System.out.printin("Even");}
public static void printOdd() {System.out.printin(*Odd"):}

Method entry vs. Call site

Can you do instrumentation
automatically?

3/15/18

People also do byte code
instrumentation, because

 Source code is hot needed, so
transformations can be used on
applications with closed source and
commercial applications

 Code can be weaved in at runtime
transparently to users

* Why source code?

Tools for Program Analysis and
Transformation

* ASM

— Class generation and ftransformation based
on byte code

* Soot

—Program analysis and transformation
framework based on byte code

+ WALA
— Program analysis and transformation

framework based on source code of Java
and Javascript, and byte code of Java

Java Virtual Machine (JVM)

+ A"virtual” computer that resides in the
“real" computer as a software process

+ Java byte code is the instruction set of
the JVM

+ It gives Java the flexibility of platform
independence

JVM[4]
Java Code (.java)

v

JAVAC
compiler

)

Byte Code (.class)

! ! |
VM VM VM
' ' '
Windows | Linux ‘ Mac ‘

JVM Architecture[5]

class
class files loader
subsystem
native
method fee Java pe method
area stacks registers
stacks

runtime data areas

PN
\ J_|7_ I
native
execution 1, native method method
engine interface libraries

Java Stack

* JVM is a stack-based machine
— Each thread has a JVM stack which stores
frames
— A frame is created each time a method is
invoked, including
* an operand stack,
« an array of local variables, and
+ a reference to the runtime constant pool
— Operations are carried out by popping data
from the stack, processing them, and pushing
back the results

3/15/18

Frame Structure

012345

Array of local vaniables

Growth

Constant pool

=5

Operand stack

Method Area

* This is the area where byte code resides

* The program counter (PC) points to some
byte in tThe method area

« It alwa¥s keeps tracks of the current
instruction which is being executed
(interpreted)

« After execution of an instruction, the
JVM sets the PC to next instruction

* Method area is shared among all threads
of the process

Garbage-collected Heap

+ It is where the objects in Java
programs are stored

+ Java does not have free operator to
free any previously allocated memory

+ Java frees useless memory using
Garbage collection mechanism

Execution Engine

*+ Execute byte code directly or indirectly

— Interpretfer
+ Interpret/read the code and execute
accordingly
+ Start fast without compilation
— Just-in-time (JIT) compilers
» Translate to machine code and then execute
+ Start slow due o compilation

Execution Engine

* Adaptive optimization
—Performs dynamic recompilation of portions
of a program based on the current
execution profile
— Make a trade-off between just-in-time
compilation and interpreting instructions
+ E.g., method inlining

Java Byte Code

* Each instruction consists of a one-byte
opcode followed by zero or more
operands

—"iadd": receives two integers as operands
and adds them together.

3/15/18

Seven Types of Instructions

1. Load and store
—aload_0, istore

2. Arithmetic and logic

Seven Types of Instructions

5. Operand stack management
—swap, dup2

6. Control transfer
—ifeq, goto

7. Method invocation and return
— invokespecial, areturn

—ladd, fempl
3. Type conversion
—i2b, d2i
4. Object creation and manipulation
—new, putfield
Example: iadd
20 j«———SP
7 27 «——sP
13 ADD 13
45 45
— /|

Instrumentation in byte code

+ System.out.printIn("printEven() is called")

getstatic #16 //Field java/lang/ System/out:L java/io/PrintStream;

Idc #22 //Load String “printEven() is called”
invokevirtual #24 //Method java/io/PrintStream.println: (Ljava/lang/
String;)V

How to manipulate byte code with
ASM?

* Using ClassReader to read from a class
file

* Using ClassWriter to write to a class
file

¢ Put new declared ClassVisitor(s)

between them to rewrite bytecode as
needed

3/15/18

Interface ClassVisitor

A visitor to visit a Java class
* The visit methods are invoked in the
following order:

—visit [visitSource] [visitOuterClass]
(visitAnnotation | visitAttribute)*
(visitInnerClass | visitField | visitMethod)*
visitEnd.

Interface MethodVisitor

A visitor to visit a Java method

 The visit methods are invoked in the
following order:

— [visitAnnotationDefault] (visitAnnotation
| visitParameterAnnotation |
visitAttribute)* [visitCode (visitXInsn |
visitLabel | visitTryCatchBlock |
visitLocalVariable | visitLineNumber)*
visitMaxs] visitEnd.

Class File Instrumentation

public class Instrumenter {
public static void main(final String args[]) throws Exception {
FileInputStream is = new FileInputStream(args[0]):
byte[]b:
ClassReader cr = new ClassReader(is);

ClassWriter cw = new
ClassWriter(ClassWriter COMPUTE_FRAMES);

ClassVisitor cv = new ClassAdapter(cw);

cr.accept(cv, 0);

b = cw.toByteArray();

FileOutputStream fos = new FileOutputStream(args[1]):
fos.write(b);

fos.close();

Class Rewriting

class ClassAdapter extends ClassVisitor implements Opcodes {
public ClassAdapter(final ClassVisitor cv) {
super(ASM5, cv);

@Override
public MethodVisitor visitMethod(final int access, final String name,

final String desc, final String signature, final String[] exceptions) {

MethodVisitor mv = cv.visitMethod(access, name, desc, signature,
exceptions);
return mv == null? null: new MethodAdapter(mv, name);
}
}

Method Rewriting - Method Entry

class MethodAdapter extends MethodVisitor implements Opcodes {
String name;
public MethodAdapter(final MethodVisitor mv, String name) {
super(ASM5, mv);
this.name = name;
}
@Override
public void visitCode() {
mv.visitFieldInsn(GETSTATIC, "java/lang/System", "out",
"Ljava/io/PrintStream;");
mv.visitLdcInsn(name + " is called");
mv.visitMethodInsn(INVOKEVIRTUAL, "java/io/
PrintStream", "println", "(Ljava/lang/String:)V", false);
mv.visitCode();

}

Method Rewriting - CallSite

@Override
public void visitMethodInsn(int opcode, String owner, String name,
String desc, boolean itf) {
mv.visitFieldInsn(GETSTATIC, "java/lang/System", "err",
"Ljava/io/PrintStream;");
mv.visitLdcInsn(name + " is called");
mv.visitMethodInsn(INVOKEVIRTUAL, "java/io/PrintStream",
"printin", "(Ljava/lang/String;)V", false);
mv.visitMethodInsn(opcode, owner, name, desc, itf);

}

With a method call trace, we can create

* Call graph M
— Each method corresponds o a node L\
—No context sensitivity ; /A\C

* Call free
— Context sensitivity KO A A

AN
« Calling context tree gedde B

— Collapse nodes with same hierarchical PN
context

0/07§

A D
A N
BC AC

3/15/18

Reference

[1] Eric Bruneton, ASM 4.0

A Java bytecode engineering library,

http://download.forge.objectweb.org/asm/asm4-

guide.pdf

LZ] Instrumenting Java Bytecode with ASM
t1p://web.cs.ucla.edu/~msb/cs239-tutorial/

LBLOran Greevy & Adrian Lienhard, Analyzing Dynamic
ehavior

https://www.iam.unibe.ch/scg/svn_repos/Lectures/

OORPT/12DynamicAnalysis.ppt.

L4] Viral Patel, Java Virtual Machine, An inside story!l,
t1p://viralpatel.net/blogs/java-virtual-machine-an-

inside-story/

[5] Bill Venners, The Java Virtual Machine, http://

www.artima.com/insidejvm/ed2/jvm2.html

With instrumentation, we can collect
more information...

Execution path

Statement coverage

Method input/output values
Read/write access of variables

