
3/15/18	

1	

Program Dynamic Analysis

Overview

•  Dynamic Analysis
•  JVM & Java Bytecode [2]
•  A Java bytecode engineering library:

ASM [1]

2	

What is dynamic analysis? [3]

•  The investigation of the properties of a
running software system over one or
more executions

3	

Has anyone done dynamic analysis? [3]

•  Loggers
•  Debuggers
•  Profilers
•  …

4	

Why dynamic analysis? [3]

•  Gap between run-time structure and
code structure in OO programs

5	

Trying to understand one [structure] from the other is like trying to
understand the dynamism of living ecosystems from the static taxonomy of
plants and animals, and vice-versa.
	

	 	 	 	 	 	 	 	 	--	Erich Gamma et al., Design Patterns

Why dynamic analysis?

•  Collect runtime execution information
– Resource usage, execution profiles

•  Program comprehension
– Find bugs in applications, identify hotspots

•  Program transformation
– Optimize or obfuscate programs
– Insert debugging or monitoring code
– Modify program behaviors on the fly

6	

3/15/18	

2	

How to do dynamic analysis?

•  Instrumentation
– Modify code or runtime to monitor specific

components in a system and collect data
– Instrumentation approaches

•  Source code modification
•  Byte code modification
•  VM modification

•  Data analysis

7	

A Running Example

•  Method call instrumentation
– Given a program’s source code, how do you

modify the code to record which method is
called by main() in what order?

8	

public class Test {
 public static void main(String[] args) {
 if (args.length == 0) return;

 if (args.length % 2 == 0) printEven();
 else printOdd();

 }
 public static void printEven() {System.out.println(“Even”);}
 public static void printOdd() {System.out.println(“Odd”);}

}

Source Code Instrumentation

•  Call site instrumentation
– Call print(…) before each actual method call

•  Method entry instrumentation
– Call print(…) at entry of each method

9	

Method Entry Instrumentation
public class Test {

 public static void main(String[] args) {
 if (args.length == 0) return;

 if (args.length % 2 == 0) printEven();
 else printOdd();

 }
 public static void printEven() {
 System.out.println(“printEven() is called”);
 System.out.println(“Even”);
 }
 public static void printOdd() {
 System.out.println(“printOdd() is called”);
 System.out.println(“Odd”);
 }

}

10	

Call Site Instrumentation

11	

public class Test {
 public static void main(String[] args) {
 if (args.length == 0) return;

 if (args.length % 2 == 0) {
 System.out.println(“printEven() is called”);
 printEven();
 } else {
 System.out.println(“printOdd() is called”);
 printOdd();
 }
 }
 public static void printEven() {System.out.println(“Even”);}
 public static void printOdd() {System.out.println(“Odd”);}

}

Method entry vs. Call site

12	

3/15/18	

3	

Can you do instrumentation
automatically?

13	

People also do byte code
instrumentation, because

•  Source code is not needed, so
transformations can be used on
applications with closed source and
commercial applications

•  Code can be weaved in at runtime
transparently to users

•  Why source code?

14	

Tools for Program Analysis and
Transformation

•  ASM
– Class generation and transformation based

on byte code
•  Soot

– Program analysis and transformation
framework based on byte code

•  WALA
– Program analysis and transformation

framework based on source code of Java
and Javascript, and byte code of Java

15	

Java Virtual Machine (JVM)

•  A “virtual” computer that resides in the
“real” computer as a software process

•  Java byte code is the instruction set of
the JVM

•  It gives Java the flexibility of platform
independence

16	

JVM[4]

17	

JVM Architecture[5]

18	

3/15/18	

4	

Java Stack

•  JVM is a stack-based machine
– Each thread has a JVM stack which stores

frames
– A frame is created each time a method is

invoked, including
•  an operand stack,
•  an array of local variables, and
•  a reference to the runtime constant pool

– Operations are carried out by popping data
from the stack, processing them, and pushing
back the results

19	

Frame Structure

20	

Method Area

•  This is the area where byte code resides
•  The program counter (PC) points to some

byte in the method area
•  It always keeps tracks of the current

instruction which is being executed
(interpreted)

•  After execution of an instruction, the
JVM sets the PC to next instruction

•  Method area is shared among all threads
of the process

21	

Garbage-collected Heap

•  It is where the objects in Java
programs are stored

•  Java does not have free operator to
free any previously allocated memory

•  Java frees useless memory using
Garbage collection mechanism

22	

Execution Engine

•  Execute byte code directly or indirectly
– Interpreter

•  Interpret/read the code and execute
accordingly

•  Start fast without compilation
– Just-in-time (JIT) compilers

•  Translate to machine code and then execute
•  Start slow due to compilation

23	

Execution Engine

•  Adaptive optimization
– Performs dynamic recompilation of portions

of a program based on the current
execution profile

– Make a trade-off between just-in-time
compilation and interpreting instructions

•  E.g., method inlining

24	

3/15/18	

5	

Java Byte Code

•  Each instruction consists of a one-byte
opcode followed by zero or more
operands
– "iadd”: receives two integers as operands

and adds them together.

25	

Seven Types of Instructions

1. Load and store
– aload_0, istore

2. Arithmetic and logic
–  ladd, fcmpl

3. Type conversion
–  i2b, d2i

4. Object creation and manipulation
– new, putfield

26	

Seven Types of Instructions

5. Operand stack management
– swap, dup2

6. Control transfer
–  ifeq, goto

7. Method invocation and return
–  invokespecial, areturn

27	

Example: iadd

28	

Instrumentation in byte code

•  System.out.println(“printEven() is called”)

29	

getstatic #16 //Field java/lang/System/out:Ljava/io/PrintStream;
ldc #22 //Load String “printEven() is called”
invokevirtual #24 //Method java/io/PrintStream.println: (Ljava/lang/

 String;)V

How to manipulate byte code with
ASM?

•  Using ClassReader to read from a class
file

•  Using ClassWriter to write to a class
file

•  Put new declared ClassVisitor(s)
between them to rewrite bytecode as
needed

30	

3/15/18	

6	

Interface ClassVisitor

•  A visitor to visit a Java class
•  The visit methods are invoked in the

following order:
– visit [visitSource] [visitOuterClass]

(visitAnnotation | visitAttribute)*
(visitInnerClass | visitField | visitMethod)*
visitEnd.

31	

Interface MethodVisitor

•  A visitor to visit a Java method
•  The visit methods are invoked in the

following order:
– [visitAnnotationDefault] (visitAnnotation

| visitParameterAnnotation |
visitAttribute)* [visitCode (visitXInsn |
visitLabel | visitTryCatchBlock |
visitLocalVariable | visitLineNumber)*
visitMaxs] visitEnd.

32	

Class File Instrumentation
public class Instrumenter {

 public static void main(final String args[]) throws Exception {
 FileInputStream is = new FileInputStream(args[0]);
 byte[] b;
 ClassReader cr = new ClassReader(is);
 ClassWriter cw = new

ClassWriter(ClassWriter.COMPUTE_FRAMES);
 ClassVisitor cv = new ClassAdapter(cw);

 cr.accept(cv, 0);
 b = cw.toByteArray();
 FileOutputStream fos = new FileOutputStream(args[1]);
 fos.write(b);
 fos.close();
 }

}

33	

Class Rewriting

34	

class ClassAdapter extends ClassVisitor implements Opcodes {

 public ClassAdapter(final ClassVisitor cv) {
 super(ASM5, cv);
 }

 @Override
 public MethodVisitor visitMethod(final int access, final String name,
 final String desc, final String signature, final String[] exceptions) {
 MethodVisitor mv = cv.visitMethod(access, name, desc, signature,
exceptions);

 return mv == null? null: new MethodAdapter(mv, name);
 }
}

Method Rewriting – Method Entry
class MethodAdapter extends MethodVisitor implements Opcodes {

 String name;
 public MethodAdapter(final MethodVisitor mv, String name) {
 super(ASM5, mv);
 this.name = name;
 }
 @Override

 public void visitCode() {
 mv.visitFieldInsn(GETSTATIC, "java/lang/System", "out",

"Ljava/io/PrintStream;");
 mv.visitLdcInsn(name + " is called");
 mv.visitMethodInsn(INVOKEVIRTUAL, "java/io/

PrintStream", "println", "(Ljava/lang/String;)V", false);
 mv.visitCode();
 }

}
35	

Method Rewriting - CallSite
@Override
public void visitMethodInsn(int opcode, String owner, String name,
String desc, boolean itf) {

 mv.visitFieldInsn(GETSTATIC, "java/lang/System", "err",
"Ljava/io/PrintStream;");

 mv.visitLdcInsn(name + " is called");
 mv.visitMethodInsn(INVOKEVIRTUAL, "java/io/PrintStream",

"println", "(Ljava/lang/String;)V", false);
 mv.visitMethodInsn(opcode, owner, name, desc, itf);

}

36	

3/15/18	

7	

With a method call trace, we can create

•  Call graph
– Each method corresponds to a node
– No context sensitivity

•  Call tree
– Context sensitivity

•  Calling context tree
– Collapse nodes with same hierarchical

context

37	

With instrumentation, we can collect
more information…

•  Execution path
•  Statement coverage
•  Method input/output values
•  Read/write access of variables

38	

Reference
[1] Eric Bruneton, ASM 4.0
A Java bytecode engineering library,
http://download.forge.objectweb.org/asm/asm4-
guide.pdf
[2] Instrumenting Java Bytecode with ASM,
http://web.cs.ucla.edu/~msb/cs239-tutorial/
[3] Orla Greevy & Adrian Lienhard, Analyzing Dynamic
Behavior
https://www.iam.unibe.ch/scg/svn_repos/Lectures/
OORPT/12DynamicAnalysis.ppt.
[4] Viral Patel, Java Virtual Machine, An inside story!!,
http://viralpatel.net/blogs/java-virtual-machine-an-
inside-story/
[5] Bill Venners, The Java Virtual Machine, http://
www.artima.com/insidejvm/ed2/jvm2.html

39	

