
4/13/18	

1	

Helping Developers Help Themselves:
Automatic Decomposition of Code

Review Changesets

Background

•  Code review is important for software
quality assurance

•  Understanding changes is difficult,
when the changeset consists of multiple,
independent, code differences

•  There is no tool that automatically
decomposes composite changes

2	

Contributions

•  The design and implementation of
ClusterChanges, a lightweight static
analysis technique for decomposing
changesets

•  A user study to validate the results of
ClusterChanges, to understand
differences between different types of
partitions, and to gauge the tool’s
potential usefulness

3	

ClusterChanges

•  Leverages Roslyn, a Microsoft compiler
that provides open APIs, to create an
AST for changed files with the best
effort

•  Uses the def-use relationship to cluster
diff-regions based on the edited code in
after-files
– E.g., if a type/field/or method is

referenced by a method, the two diff
regions are connected

4	

ClusterChanges (cont’d)

•  Group diff-regions in the same method
together

•  Trivial vs. Nontrivial partitions
– Trivial partitions are one or more diff-

regions within the same method, or single
diff-regions outside a method

– Nontrivial partitions contain diff-regions
from multiple methods or changed entities

5	

Tree view displaying a changeset

6	

4/13/18	

2	

Distribution of non-trivial partitions
and trivial partitions

7	

•  45% of changesets contain single nontrivial
regions.

•  There is a long tail in trivial in-method
partitions

Research Questions and Interview
Questions

•  RQ1: Do developers agree with the change
decomposition by ClusterChanges?
– Is the decomposition intuitive?
– Is the decomposition correct?

•  RQ2: What role do trivial partitions play?
– Are nontrivial partitions more important than

trivial partitions?
– Are trivial partitions easier to understand?

8	

Research Questions and Interview
Questions (cont’d)

•  RQ3: Can organizing a changeset using
ClusterChanges’ decomposition help
reviewers?
– Does the decomposition help reviewers

understand changes?
– Does the decomposition help structure the

changes in a code review?
– Would you like to use the tool for your next

code review?

9	

RQ1

•  Of the 20 participants, 16 said that the
nontrivial partitions were both correct
and complete
– I.e., the nontrivial partitions were indeed

independent, the diff-regions within each
partition were related, and there were no
missing conceptual groups

– 14 developers would have moved some of
the trivial changes (not more than 3) to one
of the nontrivial partitions

10	

RQ2

•  Some of the trivial partitions were
incorrect: they should have been
included in a nontrivial partition

•  Nontrivial partitions are not necessarily
more important

•  Trivial partitions are easier to
understand

11	

RQ3

•  All participants were positive about the
general concept of ClusterChanges
– To help understand large changesets
– To help assign reviewers to a specific

partition

12	

4/13/18	

3	

Discussion

•  Missed Relations
– E.g., overridden methods, commonly used

tags or annotations
– Focus on after-files, so miss relationship

based on deleted code
– External framework usage and XML files

13	

