Program Representations

Overview

Abstract Syntax Tree
— Eclipse IDT

— Java Model

— Eclipse JDT AST

Control Flow Graph
Program Dependence Graph
Points-to Graph

Call Graph

4/13/16

Abstract Syntax Tree (AST)

* Created by the compiler at the end of
syntax analysis phase

* A tree representation for the abstract
syntactic structure of source code
— Node: construct, such as statement, loop
— Edge: containment relationship

« Different compilers can define
different AST representations

Eclipse JDT

* The Eclipse Java Development Tools
project (JDT) provides
—tools to develop Java application
— APIs to access, create, and manipulate Java

projects’ source code

« It provides access to Java source code
via fwo ways: Java Model and Abstract
Syntax Tree

4/13/16

Java Model

* It is defined in the org.eclipse.jdt.core
plug-in

« Each Java project is internally
represented in Eclipse as a Java model

* It has a tree structure to represent
hierarchical components in a Java project

The Tree Structure of Java Project[2]

= =2 net.sourceforge. earticleast.app+——— IJavaProject

= (B src - IPackageFragmentRoot
- net.sourceforge. earticleast, app -+— IPackageFragment
= u] Activator.java -———————ICompilaticnUnit
= G Activator -4——— IType
o° plugin -+——IField
¥ PLUGIN_ID -+————1IField
@ getDefault)
e Activator{) -e————TMethod
@. start(BundleContext) -—IMethod
@. stop(BundleContext)
+ u] ASTApp.java
+ B\ JRE System Library [jdk1.5.0_02] ««—IPackageFragmentRoot

4/13/16

How do we use Java Model?

* Programmatically parse information
from Java Projects

« Create new Java elements

« Automatically manipulate Java source
code

Programmatically Parse Information

public Object execute(ExecutionEvent event) throws ExecutionException {
// Get the root of the workspace
IWorkspace workspace = ResourcesPlugin.getWorkspace();
IWorkspaceRoot root = workspace.getRoot();
// Get all projects in the workspace
IProject[] projects = root.getProjects();
// Loop over all projects
for (IProject project : projects) {
try {
printProjectInfo(project);
} catch (CoreException e) {
e.printStackTrace();

} private void printIMethodDetails(IType type) throws JavaModelException
} IMethod[] methods = type.getMethods();
return null; for (IMethod method : methods) {
System.out.println("Method name " + method.getElementName());
System.out.println("Signature " + method.getSignature());
System.out.println("Return Type " + method.getReturnType());

4/13/16

Create New Java Elements

private void createPackage(IProject project) throws JavaModelException {
IJavaProject javaProject = JavaCore.create(project);
IFolder folder = project.getFolder("src");
// folder.create(true, true, null);
IPackageFragmentRoot srcFolder = javaProject
.getPackageFragmentRoot (folder);
IPackageFragment fragment = srcFolder.createPackageFragment(project.getName(), true, nu

11); private void changeClasspath(IProject project) throws JavaModelException {
} IJavaProject javaProject = JavaCore.create(project);
} IClasspathEntry[] entries = javaProject.getRawClasspath();

IClasspathEntry[] newEntries = new IClasspathEntry[entries.length + 1];

System.arraycopy(entries, 0, newEntries, 0, entries.length);

// add a new entry using the path to the container
Path junitPath = new Path("org.eclipse.jdt.junit.JUNIT CONTAINER/4");
IClasspathEntry junitEntry = JavaCore
.newContainerEntry(junitPath);
newEntries[entries.length] = JavaCore
.newContainerEntry(junitEntry.getPath());
javaProject.setRawClasspath(newEntries, null);

Why is Java Model important?

* The basis for quick fix and code generation
feature in Eclipse
— generate equals() and hashcode()

— declare a new class to resolve unresolved type
reference

* APIs support structure change, but not
statement

* Enabler for automatic programming

4/13/16

Eclipse AST[3] , s

Body

@ VariableDeclaration -

SimpleName

SimpleType “name”

SimpleName

Assignment

Assignment.Operator,
o
ThisExpression

et

-
s

|3|

(Expression Statement]

Expression

SimpleName

How do we generate Eclipse AST
from source code?

protected CompilationUnit parse(ICompilationUnit unit) {
ASTParser parser = ASTParser.newParser (AST.JLS3);
parser.setKind (ASTParser.K COMPILATION_UNIT) ;
parser.setSource (unit); // set source
parser.setResolveBindings (true); // we need bindings later on
return (CompilationUnit) parser.createAST (null /* IProgressMonitor */);

// parse|

12

4/13/16

How do we use Eclipse AST?

« Use ASTVisitor to parse any source
code information from the AST

« Conduct program analysis based on the
AST information

* Manipulate AST to insert/delete code

Parse Information

* To get information about AST, you only
need to declare a visitor which extends
ASTVisitor to define how to visit each
AST element

public class MethodVisitor extends ASTVisitor {
List<MethodDeclaration> methods = new ArrayList<MethodDeclaration>();

@override

public boolean visit(MethodDeclaration node) {
methods.add(node) ;
return super.visit(node);

}

public List<MethodDeclaration> getMethods() {
return methods;
}
}

14

4/13/16

AST Manipulation[2]

« Two ways to manipulate AST:
— Directly modifying the AST

— Noting the modifications in a separate
protocol, which is handled by ASTRewrite

AST

Why is AST important?

* Makes it possible to apply all kinds of
syntax-directed translation/
transformation

« Combined with Java model, enable
automatic programming

* When mining software repository to
understand program changes, program
analysis based on AST is the key to
automate the process

4/13/16

Control Flow Graph (CFG)

* A representation, using graph notation,
of all paths that might be traversed
through a program during its execution

Formal Representation[5]

« CFG = <V, E, Entry, Exit>, where

— V = vertices or nodes, representing an
instruction or basic block (a group of
instructions)

— E = edges, potentially flow of control,
ECVxV

— Entry €V, unique program entry
(Vv EV)[Entry——V]

— Exit €V, unique program exit
(Vv € V)[v—— Exit]

4/13/16

Basic Block

« A maximal sequence of consecutive
instructions such that inside the basic
block, an execution can only proceed
from one instruction to the next

« Single entry, single exit

[SN

L1:

Hw

L2:

O 00 N

10

11L3:

Az4
t1= A*B

t2=11/C

if 12 < W goto L2

M=11*k
t3=M+T

H=1I
M=13-H

CFG Example

 What are the basic
blocks?

* What are the edges
between them?

if +3>=0gotoL3

goto L1

halt

4/13/16

10

CFG Example

21

Why is CFG important?

* A lot of program analysis and abstract
representations are built based on it

 In testing scenario, CFG is leveraged to
design test cases in order o have
enough path/statement coverage

4/13/16

11

4/13/16

CFG Used for Selective Testing

* Basic Path Testing
— Cyclomatic complexity V(G)
« number of simple decisions + 1
* number of enclosed areas + 1

— What are the paths to test?

Program Dependence Graph (PDG)

* A directed graph representing
dependencies among code

— Control dependence

* A control depends on B if B's execution decides
whether or not A is executed

— Data dependence

* A data depends on B if A uses variable defined
in B

12

Control Dependence Example

BB3 control depends on BB2

because whether or not BB3 is
executed depends on the branch
taken at BB2

— Every block control depends on
entry block

—In most cases, statements control
depend on their AST container
constructs, such as loop, switch,
if. Can you think about cases
violating this observation?

Data Dependence Example

BB2 data depends on BB1
because BB2 uses the variable
11, whose value is defined by
instruction(s) in BB1

— Which statement does
“sum = sum + i" data depend on?

sum = 0;
i=1;
while (i < N) {
izi+l1;
sum = sum + i;

}

4/13/16

13

PDG

A PDG contains both control
dependence edges and data
dependence edges .

P
-~
-

—> Direct control dependence edge

------ > Direct data dependence edge

Why is PDG important?

« It demonstrates some program
semantics and facilitates program
comprehension
— find bugs, program slicing

* Guide safe program transformations/
optimizations which modify code without
compromising dependency relations

— Automatic parallelism, common
subexpression elimination, code motion

28

4/13/16

14

Program Slicing

« Set of statements that may affect the
values at some point of interest

— data/control dependence relationship
 Backward slicing

— The statements the current value is
dependent on

« Forward slicing

— The statements which depend on the
current value

29

Example

* 13 at instruction 6:
— Backward slicing?
— Forward slicing?

-

-~

P
e

4/13/16

15

Points-to Graph

 For a program location, for any object
reference/pointer, calculate all the
possible objects/variables it may/must
refer/point to

— r = hew C(); r
pf=r; l
t = new C();
if () O
q=p:
r->f = 1;

Points-to Graph

 For a program location, for any object
reference/pointer, calculate all the
possible objects/variables it may/must
refer/point to

r = hew C(); r
—pf=r p l
t = new C(); _,O f O
if (..)
q=p:
r->f = t;

4/13/16

16

Points-to Graph[4]

 For a program location, for any object
reference/pointer, calculate all the
possible objects/variables it may/must

refer/point to

r = hew C();
p.f=r
— 1 = new C();
if (..)

q=p:
r->f = t;

N
\O—O/Q

t

Points-to Graph

 For a program location, for any object
reference/pointer, calculate all the
possible objects/variables it may/must

refer/point to

r = hew C();
p.f=r

t = new C();
if (..)

—_ q=p.
rf=1

.

4/13/16

17

4/13/16

Points-to Graph

 For a program location, for any object
reference/pointer, calculate all the
possible objects/variables it may/must
refer/point to

r = hew C();
p.f=r
t = new C();
if (..)

q=p:

— r->f = t;

p.f.fand t are aliases

Why is Points-to Graph important?

« Connect together analyzed program
semantics for individual methods

— Essential o expand intra-procedural
analysis to inter-procedural

 Detect consistent usage of resources
— File open/close, lock/unlock, malloc/free
* Garbage collection

18

4/13/16

Call Graph

* A directed graph representing caller-
callee relationship between methods/
functions
— Node: methods/functions
— Edges: calls

Why is Call Graph important?

* Facilitate program comprehension and
optimization
— When a program crashes, what is the
possible calling context?
— Detect anomalies of program execution

19

4/13/16

Reference

[1] Lars Vogel, Eclipse JDT - Abstract Syntax Tree (AST)
and the Java Model - Tutorial, http://www.vogella.com/
tutorials/EclipseJDT/article.html,

[2] Thomas Kuhn, Eye Media GmbH, Olivier Thomann,
Abstract Syntax Tree,
https://www.eclipse.org/articles/article.php?file=Article-
JavaCodeManipulation "AST/index.html

3] YAAT - Yet another AST tutorial

ttp://sahits.ch/blog/blog/2008/05/23/yaat-yet-another-
ast-tutorial/
L4] Xiangyu Zhang, Program Representations,
ttps://www.cs.purdue.edu/homes/xyzhang/fall07/
590Z-pr-slicing.ppt.
[5] Kathryn S. McKinley, Program Representations, http://
www.cs.utexas.edu/users/mckinley/380C/lecs/02.pdf

39

20

