
4/13/16	

1	

Program Representations

Overview

•  Abstract Syntax Tree
– Eclipse JDT
– Java Model
– Eclipse JDT AST

•  Control Flow Graph
•  Program Dependence Graph
•  Points-to Graph
•  Call Graph

2	

4/13/16	

2	

Abstract Syntax Tree (AST)

•  Created by the compiler at the end of
syntax analysis phase

•  A tree representation for the abstract
syntactic structure of source code
– Node: construct, such as statement, loop
– Edge: containment relationship

•  Different compilers can define
different AST representations

3	

Eclipse JDT

•  The Eclipse Java Development Tools
project (JDT) provides
– tools to develop Java application
– APIs to access, create, and manipulate Java

projects’ source code
•  It provides access to Java source code

via two ways: Java Model and Abstract
Syntax Tree

4	

4/13/16	

3	

Java Model

•  It is defined in the org.eclipse.jdt.core
plug-in

•  Each Java project is internally
represented in Eclipse as a Java model

•  It has a tree structure to represent
hierarchical components in a Java project

5	

The Tree Structure of Java Project[2]

6	

4/13/16	

4	

How do we use Java Model?

•  Programmatically parse information
from Java Projects

•  Create new Java elements
•  Automatically manipulate Java source

code

7	

Programmatically Parse Information

8	

4/13/16	

5	

Create New Java Elements

9	

Why is Java Model important?

•  The basis for quick fix and code generation
feature in Eclipse
– generate equals() and hashcode()
– declare a new class to resolve unresolved type

reference
•  APIs support structure change, but not

statement
•  Enabler for automatic programming!

10	

4/13/16	

6	

Eclipse AST[3]

11	

How do we generate Eclipse AST
from source code?

12	

4/13/16	

7	

How do we use Eclipse AST?

•  Use ASTVisitor to parse any source
code information from the AST

•  Conduct program analysis based on the
AST information

•  Manipulate AST to insert/delete code

13	

Parse Information

•  To get information about AST, you only
need to declare a visitor which extends
ASTVisitor to define how to visit each
AST element

14	

4/13/16	

8	

AST Manipulation[2]

•  Two ways to manipulate AST:
– Directly modifying the AST
– Noting the modifications in a separate

protocol, which is handled by ASTRewrite

15	

Why is AST important?

•  Makes it possible to apply all kinds of
syntax-directed translation/
transformation

•  Combined with Java model, enable
automatic programming

•  When mining software repository to
understand program changes, program
analysis based on AST is the key to
automate the process

16	

4/13/16	

9	

Control Flow Graph (CFG)

•  A representation, using graph notation,
of all paths that might be traversed
through a program during its execution

17	

Formal Representation[5]

•  CFG = <V, E, Entry, Exit>, where
– V = vertices or nodes, representing an

instruction or basic block (a group of
instructions)

– E = edges, potentially flow of control,

–  , unique program entry

–  , unique program exit

E ⊆V ×V
Entry ∈V
(∀v ∈V)[Entry *#→# v]
Exit ∈V
(∀v ∈V)[v *#→# Exit] 18	

4/13/16	

10	

Basic Block

•  A maximal sequence of consecutive
instructions such that inside the basic
block, an execution can only proceed
from one instruction to the next

•  Single entry, single exit

19	

CFG Example
1 A = 4
2 t1 = A * B

3 L1: t2 = t1/C
4 if t2 < W goto L2

5 M = t1 * k
6 t3 = M + I

7 L2: H = I
8 M = t3 – H
9 if t3 >= 0 goto L3

10 goto L1

11 L3: halt

•  What are the basic
blocks?

•  What are the edges
between them?

20	

4/13/16	

11	

CFG Example

	
 entry	

BB1:	
 1-­‐2	

BB2:	
 3-­‐4	

BB3:	
 5-­‐6	

BB4:	
 7-­‐9	

BB5:	
 10	
 BB6:	
 11	

exit	

21	

Why is CFG important?

•  A lot of program analysis and abstract
representations are built based on it

•  In testing scenario, CFG is leveraged to
design test cases in order to have
enough path/statement coverage

22	

4/13/16	

12	

CFG Used for Selective Testing

•  Basic Path Testing
– Cyclomatic complexity V(G)
•  number of simple decisions + 1
•  number of enclosed areas + 1

– What are the paths to test?

	
 entry	

BB1:	
 1-­‐2	

BB2:	
 3-­‐4	

BB3:	
 5-­‐6	

BB4:	
 7-­‐9	

BB5:	
 10	
 BB6:	
 11	

exit	

23	

Program Dependence Graph (PDG)

•  A directed graph representing
dependencies among code
– Control dependence
•  A control depends on B if B’s execution decides

whether or not A is executed
– Data dependence
•  A data depends on B if A uses variable defined

in B

24	

4/13/16	

13	

Control Dependence Example

•  BB3 control depends on BB2
because whether or not BB3 is
executed depends on the branch
taken at BB2
– Every block control depends on

entry block
– In most cases, statements control

depend on their AST container
constructs, such as loop, switch,
if. Can you think about cases
violating this observation?

	
 entry	

BB1:	
 1-­‐2	

BB2:	
 3-­‐4	

BB3:	
 5-­‐6	

BB4:	
 7-­‐9	

BB5:	
 10	
 BB6:	
 11	

exit	

25	

Data Dependence Example
	
 entry	

1.  …	

2.  t1	
 =	
 …	

3.	
 t2	
 =	
 t1/C	

4.	
 if	
 t2	
 <	
 W	
 …	

BB3:	
 5-­‐6	

BB4:	
 7-­‐9	

BB5:	
 10	
 BB6:	
 11	

exit	

•  BB2 data depends on BB1
because BB2 uses the variable
t1, whose value is defined by
instruction(s) in BB1
– Which statement does

“sum = sum + i” data depend on?
sum = 0;
i = 1;
while (i < N) {
 i = i + 1;
 sum = sum + i;
}

26	

4/13/16	

14	

PDG

•  A PDG contains both control
dependence edges and data
dependence edges

	
 entry	

1.  …	

2.  t1	
 =	
 …	

3.	
 L1:	
 t2	
 =	
 t1/C	

4.	
 	
 	
 	
 	
 	
 	
 	
 if	
 t2	
 <	
 W	
 goto	
 L2	

5.	
 M	
 =	
 t1	
 *	
 k	

6.	
 t3	
 =	
 M	
 +	
 I	

7.	
 L2:	
 H	
 =	
 I	

8.	
 	
 	
 	
 	
 	
 	
 M	
 =	
 t3	
 –	
 H	

9.	
 	
 	
 	
 	
 	
 	
 if	
 t3	
 >=0	
 goto	
 L3	

10.	
 goto	
 L1	
 11.	
 L3:	
 halt	

exit	

Direct	
 control	
 dependence	
 edge	

Direct	
 data	
 dependence	
 edge	

27	

Why is PDG important?

•  It demonstrates some program
semantics and facilitates program
comprehension
– find bugs, program slicing

•  Guide safe program transformations/
optimizations which modify code without
compromising dependency relations
– Automatic parallelism, common

subexpression elimination, code motion

28	

4/13/16	

15	

Program Slicing

•  Set of statements that may affect the
values at some point of interest
– data/control dependence relationship

•  Backward slicing
– The statements the current value is

dependent on
•  Forward slicing
– The statements which depend on the

current value

29	

Example

•  t3 at instruction 6:
– Backward slicing?
– Forward slicing?

	
 entry	

1.  A	
 =	
 4	

2.  t1	
 =	
 …	

3.	
 L1:	
 t2	
 =	
 t1/C	

4.	
 	
 	
 	
 	
 	
 	
 	
 if	
 t2	
 <	
 W	
 goto	
 L2	

5.	
 M	
 =	
 t1	
 *	
 k	

6.	
 t3	
 =	
 M	
 +	
 I	

7.	
 L2:	
 H	
 =	
 I	

8.	
 	
 	
 	
 	
 	
 	
 M	
 =	
 t3	
 –	
 H	

9.	
 	
 	
 	
 	
 	
 	
 if	
 t3	
 >=0	
 goto	
 L3	

exit	

10.	
 goto	
 L1	
 11.	
 L3:	
 halt	

30	

4/13/16	

16	

Points-to Graph

•  For a program location, for any object
reference/pointer, calculate all the
possible objects/variables it may/must
refer/point to
r = new C();
p.f = r;
t = new C();
if (…)
 q=p;
r->f = t;

r

31	

Points-to Graph

•  For a program location, for any object
reference/pointer, calculate all the
possible objects/variables it may/must
refer/point to
r = new C();
p.f = r;
t = new C();
if (…)
 q=p;
r->f = t;

r
p

f

32	

4/13/16	

17	

Points-to Graph[4]

•  For a program location, for any object
reference/pointer, calculate all the
possible objects/variables it may/must
refer/point to
r = new C();
p.f = r;
t = new C();
if (…)
 q=p;
r->f = t;

r
p

f

t

33	

Points-to Graph

•  For a program location, for any object
reference/pointer, calculate all the
possible objects/variables it may/must
refer/point to
r = new C();
p.f = r;
t = new C();
if (…)
 q=p;
r.f = t;

r
p

f

t
q

34	

4/13/16	

18	

Points-to Graph

•  For a program location, for any object
reference/pointer, calculate all the
possible objects/variables it may/must
refer/point to
r = new C();
p.f = r;
t = new C();
if (…)
 q=p;
r->f = t;

r
p

f

t
q

f

p.f.f	
 and	
 t	
 are	
 aliases	

35	

Why is Points-to Graph important?

•  Connect together analyzed program
semantics for individual methods
– Essential to expand intra-procedural

analysis to inter-procedural
•  Detect consistent usage of resources
– File open/close, lock/unlock, malloc/free

•  Garbage collection

36	

4/13/16	

19	

Call Graph

•  A directed graph representing caller-
callee relationship between methods/
functions
– Node: methods/functions
– Edges: calls

37	

Why is Call Graph important?

•  Facilitate program comprehension and
optimization
– When a program crashes, what is the

possible calling context?
– Detect anomalies of program execution

38	

4/13/16	

20	

Reference
[1] Lars Vogel, Eclipse JDT - Abstract Syntax Tree (AST)
and the Java Model – Tutorial, http://www.vogella.com/
tutorials/EclipseJDT/article.html,
[2] Thomas Kuhn, Eye Media GmbH, Olivier Thomann,
Abstract Syntax Tree,
https://www.eclipse.org/articles/article.php?file=Article-
JavaCodeManipulation_AST/index.html
[3] YAAT – Yet another AST tutorial,
http://sahits.ch/blog/blog/2008/05/23/yaat-yet-another-
ast-tutorial/
[4] Xiangyu Zhang, Program Representations,
‪https://www.cs.purdue.edu/homes/xyzhang/fall07/
590Z-pr-slicing.ppt‪.‬
[5] Kathryn S. McKinley, Program Representations, http://
www.cs.utexas.edu/users/mckinley/380C/lecs/02.pdf

39	

