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Design Engineering 

Overview 

•  What is software design? 
•  How to do it? 
•  Principles, concepts, and practices 
•  High-level design 
•  Low-level design 
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Design Engineering 

•  The process of making decisions about 
HOW to implement software solutions 
to meet requirements 

•  Encompasses the set of concepts, 
principles, and practices that lead to 
the development of high-quality systems 
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Concepts in Software Design 

•  Modularity 
•  Cohesion & Coupling 
•  Information Hiding 
•  Abstraction & Refinement 
•  Refactoring 
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Modularity 

•  Software is divided into separately 
named and addressable components, 
sometimes called modules, that are 
integrated to satisfy problem 
requirements 

•  Divide-and-conquer  
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Modularity and Software Cost 
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Cohesion & Coupling 

•  Cohesion 
– The degree to which the elements of a module 

belong together 
– A cohesive module performs a single task 

requiring little interaction with other modules 
•  Coupling 

– The degree of interdependence between 
modules 

•  High cohesion and low coupling 
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Information Hiding 

•  Do not expose internal information of a 
module unless necessary 
– E.g., private fields, getter & setter 

methods 
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Abstraction & Refinement 

•  Abstraction 
– To manage the complexity of software, 
– To anticipate detail variations and future 

changes 
•  Refinement  

– A top-down design strategy to reveal low-level 
details from high-level abstraction as design 
progresses 
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Abstraction to Reduce Complexity 

•  We abstract complexity at different 
levels 
– At the highest level, a solution is stated in 

broad terms, such as “process sale” 
– At any lower level, a more detailed 

description of the solution is provided, such 
as the internal algorithm of the function 
and data structure 
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Abstraction to Anticipate Changes 

•  Define interfaces to leave 
implementation details undecided 

•  Polymorphism 

<<interface>> 
ITaxCalculator 

getTaxes(…) 

TaxMaster 
 

TurboTax 
 

TaxBonanza 
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Refinement 

•  The process to reveal lower-level details 
– High-level architecture software design 
– Low-level software design 

•  Classes & objects 
•  Algorithms 
•  Data 
•  UI 
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Refactoring 

“…the process of changing a software 
system in such a way that it does not 
alter the external behavior of the code 
[design] yet improves its internal 
structure”                    --Martin Fowler 
 
•  Goal: to make software easier to 

integrate, test, and maintain. 
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Software Design Practices Include: 

•  Two stages 
– High-level: Architecture design 

•  Define major components and their relationship 
– Low-level: Detailed design 

•  Decide classes, interfaces, and implementation 
algorithms for each component 

N.	
  Meng,	
  B.	
  Ryder	
   14	
  



1/28/16	
  

8	
  

How to Do Software Design? 

•  Reuse or modify existing design models 
– High-level: Architectural styles 
– Low-level: Design patterns, Refactorings 

•  Iterative and evolutionary design 
– Package diagram 
– Detailed class diagram 
– Detailed sequence diagram 
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Software Architecture 

•  “The architecture of a system is 
comprehensive framework that 
describes its form and structure -- its 
components and how they fit together”  
         --Jerrold Grochow 
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What is Architectural Design? 

•  Design overall shape & structure of 
system 
– the components  
– their externally visible properties 
– their relationships  

•  Goal: choose architecture to reduce 
risks in SW construction & meet 
requirements  
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SW Architectural Styles 

•  Architecture composed of 
– Set of components 
– Set of connectors between them 

•  Communication, co-ordination, co-operation 
– Constraints  

•  How can components be integrated? 
– Semantic models  

•  What are the overall properties based on 
understanding of individual component properties? 
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Architecture Patterns 

•  Common program structures 
– Pipe & Filter Architecture 
– Event-based Architecture 
– Layered Architecture 
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Pipe & Filter Architecture 

•  A pipeline contains a chain of data 
processing elements 
– The output of each element is the input of the 

next element 
– Usually some amount of buffering is provided 

between consecutive elements 
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Example: Optimizing Compiler  
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Compiler Optimization 
[Engineering a Compiler, K. D. Cooper, L. Torczon] 

Compiler Structure 
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Pros and Cons 

•  Other examples 
– UNIX pipes, signal processors  

•  Pros 
– Easy to add or remove filters 
– Filter pipelines perform multiple operations 

concurrently 
•  Cons 

– Hard to handle errors  
– May need encoding/decoding of input/output  
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Event-based Architecture 
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EventEmitter

EventDispatcher

EventConsumerEventConsumer EventConsumer

event
subscription

•  Promotes the production, detection, 
consumption of, and reaction to events 

•  More like event-driven programming 

Example: GUI 
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Pros and Cons 

•  Other examples: 
– Breakpoint debuggers, phone apps, robotics 

•  Pros 
– Anonymous handlers of events 
– Support reuse and evolution, new consumers 

easy to add 
•  Cons 

– Components have no control over order of 
execution 
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Layered/Tiered Architecture 

•  Multiple layers are defined to allocate 
responsibilities of a software product 

•  The communication between layers is 
hierarchical 

•  Examples: OS, network protocols  
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3-layer Architecture 
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Data

Presentation

Logic

•  Presentation: UI to interact with users 
•  Logic: coordinate applications and perform 

calculations 
•  Data: store and retrieve information as 

needed 

Example: Online Ordering System 
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Model-View-Controller 
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https://commons.wikimedia.org/wiki/File:MVC_Diagram_(Model-View-Controller).svg 
Design of Finite State Machine Drawing Tool 

Key Points about MVC 

•  View layer should not handle system 
events 

•  Controller layer has the application logic 
to handle events 

•  Model layer only respond to data 
operation 
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Layered Architecture: Pros and Cons 

•  Pros 
– Support increasing levels of abstraction 

during design 
– Support reuse and enhancement 

•  Cons 
– The performance may degrade  
– Hard to maintain 
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Detailed Design 

•  To decompose subsystems into modules 
•  Two approaches of decomposition 

–  Procedural 
•  system is decomposed into functional modules 

which accept input data and transform it to 
output data  

•  achieves mostly procedural abstractions  
– Object-oriented 

•  system is decomposed into a set of 
communicating objects 

•  achieves both procedural + data abstractions 
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Work Results 

•  Dynamic models  
– help design the logic or behaviors of the code  
– UML interaction diagrams 

•  (Detailed) sequence diagrams, or 
•  Communication diagrams 

•  Static models  
– help design the definition of packages, class 

names, attributes, and method signatures 
–  (Detailed) UML class diagrams 
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OOD 

•  To identify responsibilities and assign 
them to classes and objects 

•  Responsibilities for doing 
– E.g., create an object, perform calculations, 

invoke operations on other objects  
•  Responsibilities for knowing 

– E.g., attributes, data involved in 
calculations, parameters when invoking 
operations 
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Guidelines 

•  Spend significant time doing interaction 
diagrams, not just class diagrams 

•  Do static modeling after dynamic 
modeling 
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UML Interaction Diagrams 

•  To illustrate how objects interact via 
messages 

•  Two types of interaction diagrams 
– Sequence diagrams 
– Communication diagrams 
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Sequence diagram 

•  Illustrate interactions in a kind of fence 
format, in which each new object is 
added to the right 
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doTwo 

doThree 

:A myB: B 

doOne 

What Is The Possible Representation 
in Code? 
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public class A
{
    private B myB = new B();
    public void doOne() 
    {
        myB.doTwo();
        myB.doThree();
    }
}
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Communication Diagram 

•  To illustrate object interactions in a 
graph or network format, in which 
objects can be placed anywhere on the 
diagram 
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: A doOne 

1: doTwo 

myB: B 
2: doThree 

Sequence vs. Communication 

•  Sequence diagram 
– Tool support is better and more notation 

options are available 
– Easier to see the call flow sequence 

•  Communication diagram 
– More space-efficient 
– Modifying wall sketches is easier 

N.Meng,	
  B.Ryder	
   40	
  



1/28/16	
  

21	
  

Design Class Diagrams 

•  Differences from Conceptual Class 
Diagrams in Domain model 
– Contain types, directed associations with 

multiplicities, methods 
– Provide visibility between objects 
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Type Information 

•  Types of attributes 
•  Types of method parameters/returns 

(can be omitted) 
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Sale 
date: Date 

isComplete:bool 
… 
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Accessibility of Methods and Fields 

•  public: can be accessed by any code 
–  UML notation: +foo 

•  private: can be accessed only by code inside 
the class 
–  UML notation: -foo 

•  protected: can be accessed only by code in 
the class and in its subclasses 
–  UML notation: #foo 

•  Fields usually are not public, but have getters 
and setters instead 
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UML Class Diagram 
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private 
static 
field 

public  
static  
method 

public  
constructor 
 
note: “static constructor”  
is meaningless: by definition, 
a constructor is invoked on an object 
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Mapping Design to Code 

•  DCDs -> classes in code 
– DCD: class names, methods, attributes, 

superclasses, associations, etc. 
– Tools can do this automatically 

•  Interaction diagrams -> method bodies 
– Interactions in the design model imply that 

certain method calls should be included in a 
method’s body 
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Mapping Associations (* : 1, 1 : 1) 
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public class SalesLineItem { 
 private int quantity; 
 private ProductSpecification productSpec; 
 public SalesLineItem(ProductSpecification s, int q) {…} 

} 

SalesLineItem 
quantity:Integer 

getSubtotal() 

Product  
Specification 
descr:String 
price:Money 
id:ItemID 

… 

Described-by 
1 * 
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Mapping Associations (1 : *) 
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Sales 
LineItem 

quantity:Integer 
… 

Sale 
…  
… 

Contains 
1 1..* 

public class Sale { 
 private List<SalesLineItem> lineItems = new 

 ArrayList<SalesLineItem>(); 
 private Date date = new Date(); 
 public void makeLineItem(ProductDescription desc, int qnty) { 
  lineItems.add(new SalesLineItem(desc, qnty)); 

    }  
 … 

} 

Mapping Associations (* : *) 
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Student 
… 
… 

Course 
…  
… 

Contains 1 1..* 

1..* 1 Takes 
public class Course { 

 private List<Student> students = new ArrayList<Student>(); 
 public addStudent(int sid) {…}   

} 
 
public class Student { 

 private List<Course> courses = new ArrayList<Course>(); 
 public addCourse(int cid) {…} 

} 
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Design Patterns 

•  Definition 
– A named general reusable solution to 

common design problems 
– Used in Java libraries 

•  Major source: GoF book 1995 
– “Design Patterns: Elements of Reusable 

Object-Oriented Software” 
– 24 design patterns 
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Purpose-based Pattern Classification 

•  Creational 
– About the process of object creation 

•  Structural 
– About composition of classes or objects 

•  Behavioral 
– About how classes or objects interact and 

distribute responsibility 
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Design pattern space 
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Visitor Pattern 

•  Scenario: Given a set of objects in a 
heterogeneous aggregate structure, 
such as a tree, you want to define and 
perform various distinct and unrelated 
operations on them 
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Example 
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<<interface>> 
Graphic 

 
Draw() 

Picture 
parts: Graphic[] 

Draw() 

Line 
 

Draw() 

Rectangle 
 

Draw() 

Triangle 
 

Draw() 

•  What will you do if you always need to 
add operations to the objects, such as 
Add(), Remove(), Update()? 

Visitor Pattern 
•  You want to limit the scope of introduced 

changes  
– Within a class vs. across different classes 

•  You want to avoid “polluting” the node 
classes with various operations 

•  Create a Visitor class hierarchy that 
defines a virtual visit() method for each 
node type 

•  Add a virtual accept() method to the base 
class of all node classes 
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Visitor Pattern 
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<<interface>> 
Graphic 

 
accept(v: Visitor) 

Picture 
parts: Graphic[] 

accept(v: Visitor) 

Line 
 

accept(v: Visitor) 

Rectangle 
 

accept(v: Visitor) 

Triangle 
 

accept(v: Visitor) 

<<interface>> 
Visitor 

 
visit(g: Picture) 

visit(g: Rectangle) 
visit(g: Line) 

visit(g: Triangle) 

DrawVisitor 
 
… 

UpdateVisitor 
 
… 


