
1/28/16	

1	

Design Engineering

Overview

•  What is software design?
•  How to do it?
•  Principles, concepts, and practices
•  High-level design
•  Low-level design

N.	
 Meng,	
 B.	
 Ryder	
 2	

1/28/16	

2	

Design Engineering

•  The process of making decisions about
HOW to implement software solutions
to meet requirements

•  Encompasses the set of concepts,
principles, and practices that lead to
the development of high-quality systems

N.	
 Meng,	
 B.	
 Ryder	
 3	

Concepts in Software Design

•  Modularity
•  Cohesion & Coupling
•  Information Hiding
•  Abstraction & Refinement
•  Refactoring

N.	
 Meng,	
 B.	
 Ryder	
 4	

1/28/16	

3	

Modularity

•  Software is divided into separately
named and addressable components,
sometimes called modules, that are
integrated to satisfy problem
requirements

•  Divide-and-conquer

N.	
 Meng,	
 B.	
 Ryder	
 5	

Modularity and Software Cost

N.	
 Meng,	
 B.	
 Ryder	
 6	

1/28/16	

4	

Cohesion & Coupling

•  Cohesion
– The degree to which the elements of a module

belong together
– A cohesive module performs a single task

requiring little interaction with other modules
•  Coupling

– The degree of interdependence between
modules

•  High cohesion and low coupling
N.	
 Meng,	
 B.	
 Ryder	
 7	

Information Hiding

•  Do not expose internal information of a
module unless necessary
– E.g., private fields, getter & setter

methods

N.	
 Meng,	
 B.	
 Ryder	
 8	

1/28/16	

5	

Abstraction & Refinement

•  Abstraction
– To manage the complexity of software,
– To anticipate detail variations and future

changes
•  Refinement

– A top-down design strategy to reveal low-level
details from high-level abstraction as design
progresses

N.	
 Meng,	
 B.	
 Ryder	
 9	

Abstraction to Reduce Complexity

•  We abstract complexity at different
levels
– At the highest level, a solution is stated in

broad terms, such as “process sale”
– At any lower level, a more detailed

description of the solution is provided, such
as the internal algorithm of the function
and data structure

N.	
 Meng,	
 B.	
 Ryder	
 10	

1/28/16	

6	

Abstraction to Anticipate Changes

•  Define interfaces to leave
implementation details undecided

•  Polymorphism

<<interface>>
ITaxCalculator

getTaxes(…)

TaxMaster

TurboTax

TaxBonanza

N.	
 Meng,	
 B.	
 Ryder	
 11	

Refinement

•  The process to reveal lower-level details
– High-level architecture software design
– Low-level software design

•  Classes & objects
•  Algorithms
•  Data
•  UI

N.	
 Meng,	
 B.	
 Ryder	
 12	

1/28/16	

7	

Refactoring

“…the process of changing a software
system in such a way that it does not
alter the external behavior of the code
[design] yet improves its internal
structure” --Martin Fowler

•  Goal: to make software easier to

integrate, test, and maintain.

N.	
 Meng,	
 B.	
 Ryder	
 13	

Software Design Practices Include:

•  Two stages
– High-level: Architecture design

•  Define major components and their relationship
– Low-level: Detailed design

•  Decide classes, interfaces, and implementation
algorithms for each component

N.	
 Meng,	
 B.	
 Ryder	
 14	

1/28/16	

8	

How to Do Software Design?

•  Reuse or modify existing design models
– High-level: Architectural styles
– Low-level: Design patterns, Refactorings

•  Iterative and evolutionary design
– Package diagram
– Detailed class diagram
– Detailed sequence diagram

N.	
 Meng,	
 B.	
 Ryder	
 15	

Software Architecture

•  “The architecture of a system is
comprehensive framework that
describes its form and structure -- its
components and how they fit together”
 --Jerrold Grochow

N.	
 Meng,	
 B.	
 Ryder	
 16	

1/28/16	

9	

What is Architectural Design?

•  Design overall shape & structure of
system
– the components
– their externally visible properties
– their relationships

•  Goal: choose architecture to reduce
risks in SW construction & meet
requirements

N.	
 Meng,	
 B.	
 Ryder	
 17	

SW Architectural Styles

•  Architecture composed of
– Set of components
– Set of connectors between them

•  Communication, co-ordination, co-operation
– Constraints

•  How can components be integrated?
– Semantic models

•  What are the overall properties based on
understanding of individual component properties?

N.	
 Meng,	
 B.	
 Ryder	
 18	

1/28/16	

10	

Architecture Patterns

•  Common program structures
– Pipe & Filter Architecture
– Event-based Architecture
– Layered Architecture

N.	
 Meng,	
 B.	
 Ryder	
 19	

Pipe & Filter Architecture

•  A pipeline contains a chain of data
processing elements
– The output of each element is the input of the

next element
– Usually some amount of buffering is provided

between consecutive elements

N.	
 Meng,	
 B.	
 Ryder	
 20	

filter
filterfilter

filter

filter

filter

pipe

pipe

pipe
pipe

pipe

pipe

pipe pipe

pipe

Data

1/28/16	

11	

Example: Optimizing Compiler

N.	
 Meng,	
 B.	
 Ryder	
 21	

Compiler Optimization
[Engineering a Compiler, K. D. Cooper, L. Torczon]

Compiler Structure

IR	

O
pt
	
 1
	

O
pt
	
 2
	

O
pt
	
 n
	

…	

IR	

Pros and Cons

•  Other examples
– UNIX pipes, signal processors

•  Pros
– Easy to add or remove filters
– Filter pipelines perform multiple operations

concurrently
•  Cons

– Hard to handle errors
– May need encoding/decoding of input/output

N.	
 Meng,	
 B.	
 Ryder	
 22	

1/28/16	

12	

Event-based Architecture

N.	
 Meng,	
 B.	
 Ryder	
 23	

EventEmitter

EventDispatcher

EventConsumerEventConsumer EventConsumer

event
subscription

•  Promotes the production, detection,
consumption of, and reaction to events

•  More like event-driven programming

Example: GUI

N.	
 Meng,	
 B.	
 Ryder	
 24	

1/28/16	

13	

Pros and Cons

•  Other examples:
– Breakpoint debuggers, phone apps, robotics

•  Pros
– Anonymous handlers of events
– Support reuse and evolution, new consumers

easy to add
•  Cons

– Components have no control over order of
execution

N.	
 Meng,	
 B.	
 Ryder	
 25	

Layered/Tiered Architecture

•  Multiple layers are defined to allocate
responsibilities of a software product

•  The communication between layers is
hierarchical

•  Examples: OS, network protocols

N.	
 Meng,	
 B.	
 Ryder	
 26	

kernalkernel

utilities
application layer

users

1/28/16	

14	

3-layer Architecture

N.	
 Meng,	
 B.	
 Ryder	
 27	

Data

Presentation

Logic

•  Presentation: UI to interact with users
•  Logic: coordinate applications and perform

calculations
•  Data: store and retrieve information as

needed

Example: Online Ordering System

N.	
 Meng,	
 B.	
 Ryder	
 28	

http://www.cardisoft.gr/frontend/article.php?aid=87&cid=96

1/28/16	

15	

Model-View-Controller

N.	
 Meng,	
 B.	
 Ryder	
 29	

https://commons.wikimedia.org/wiki/File:MVC_Diagram_(Model-View-Controller).svg
Design of Finite State Machine Drawing Tool

Key Points about MVC

•  View layer should not handle system
events

•  Controller layer has the application logic
to handle events

•  Model layer only respond to data
operation

N.	
 Meng,	
 B.	
 Ryder	
 30	

1/28/16	

16	

Layered Architecture: Pros and Cons

•  Pros
– Support increasing levels of abstraction

during design
– Support reuse and enhancement

•  Cons
– The performance may degrade
– Hard to maintain

N.	
 Meng,	
 B.	
 Ryder	
 31	

Detailed Design

•  To decompose subsystems into modules
•  Two approaches of decomposition

–  Procedural
•  system is decomposed into functional modules

which accept input data and transform it to
output data

•  achieves mostly procedural abstractions
– Object-oriented

•  system is decomposed into a set of
communicating objects

•  achieves both procedural + data abstractions

N.	
 Meng,	
 B.	
 Ryder	
 32	

1/28/16	

17	

Work Results

•  Dynamic models
– help design the logic or behaviors of the code
– UML interaction diagrams

•  (Detailed) sequence diagrams, or
•  Communication diagrams

•  Static models
– help design the definition of packages, class

names, attributes, and method signatures
–  (Detailed) UML class diagrams

N.	
 Meng,	
 B.	
 Ryder	
 33	

OOD

•  To identify responsibilities and assign
them to classes and objects

•  Responsibilities for doing
– E.g., create an object, perform calculations,

invoke operations on other objects
•  Responsibilities for knowing

– E.g., attributes, data involved in
calculations, parameters when invoking
operations

N.	
 Meng,	
 B.	
 Ryder	
 34	

1/28/16	

18	

Guidelines

•  Spend significant time doing interaction
diagrams, not just class diagrams

•  Do static modeling after dynamic
modeling

N.Meng,	
 B.Ryder	
 35	

UML Interaction Diagrams

•  To illustrate how objects interact via
messages

•  Two types of interaction diagrams
– Sequence diagrams
– Communication diagrams

N.Meng,	
 B.Ryder	
 36	

1/28/16	

19	

Sequence diagram

•  Illustrate interactions in a kind of fence
format, in which each new object is
added to the right

N.Meng,	
 B.Ryder	
 37	

doTwo

doThree

:A myB: B

doOne

What Is The Possible Representation
in Code?

N.Meng,	
 B.Ryder	
 38	

public class A
{
 private B myB = new B();
 public void doOne()
 {
 myB.doTwo();
 myB.doThree();
 }
}

1/28/16	

20	

Communication Diagram

•  To illustrate object interactions in a
graph or network format, in which
objects can be placed anywhere on the
diagram

N.Meng,	
 B.Ryder	
 39	

: A doOne

1: doTwo

myB: B
2: doThree

Sequence vs. Communication

•  Sequence diagram
– Tool support is better and more notation

options are available
– Easier to see the call flow sequence

•  Communication diagram
– More space-efficient
– Modifying wall sketches is easier

N.Meng,	
 B.Ryder	
 40	

1/28/16	

21	

Design Class Diagrams

•  Differences from Conceptual Class
Diagrams in Domain model
– Contain types, directed associations with

multiplicities, methods
– Provide visibility between objects

N.	
 Meng,	
 B.	
 Ryder	
 41	

Type Information

•  Types of attributes
•  Types of method parameters/returns

(can be omitted)

N.	
 Meng,	
 B.	
 Ryder	
 42	

Sale
date: Date

isComplete:bool
…

1/28/16	

22	

Accessibility of Methods and Fields

•  public: can be accessed by any code
–  UML notation: +foo

•  private: can be accessed only by code inside
the class
–  UML notation: -foo

•  protected: can be accessed only by code in
the class and in its subclasses
–  UML notation: #foo

•  Fields usually are not public, but have getters
and setters instead

N.	
 Meng,	
 B.	
 Ryder	
 43	

UML Class Diagram

N.	
 Meng,	
 B.	
 Ryder	
 44	

private
static
field

public
static
method

public
constructor

note: “static constructor”
is meaningless: by definition,
a constructor is invoked on an object

1/28/16	

23	

Mapping Design to Code

•  DCDs -> classes in code
– DCD: class names, methods, attributes,

superclasses, associations, etc.
– Tools can do this automatically

•  Interaction diagrams -> method bodies
– Interactions in the design model imply that

certain method calls should be included in a
method’s body

N.	
 Meng,	
 B.	
 Ryder	
 45	

Mapping Associations (* : 1, 1 : 1)

N.	
 Meng,	
 B.	
 Ryder	
 46	

public class SalesLineItem {
 private int quantity;
 private ProductSpecification productSpec;
 public SalesLineItem(ProductSpecification s, int q) {…}

}

SalesLineItem
quantity:Integer

getSubtotal()

Product
Specification
descr:String
price:Money
id:ItemID

…

Described-by
1 *

1/28/16	

24	

Mapping Associations (1 : *)

N.	
 Meng,	
 B.	
 Ryder	
 47	

Sales
LineItem

quantity:Integer
…

Sale
…
…

Contains
1 1..*

public class Sale {
 private List<SalesLineItem> lineItems = new

 ArrayList<SalesLineItem>();
 private Date date = new Date();
 public void makeLineItem(ProductDescription desc, int qnty) {
 lineItems.add(new SalesLineItem(desc, qnty));

 }
 …

}

Mapping Associations (* : *)

N.	
 Meng,	
 B.	
 Ryder	
 48	

Student
…
…

Course
…
…

Contains 1 1..*

1..* 1 Takes
public class Course {

 private List<Student> students = new ArrayList<Student>();
 public addStudent(int sid) {…}

}

public class Student {

 private List<Course> courses = new ArrayList<Course>();
 public addCourse(int cid) {…}

}

1/28/16	

25	

Design Patterns

•  Definition
– A named general reusable solution to

common design problems
– Used in Java libraries

•  Major source: GoF book 1995
– “Design Patterns: Elements of Reusable

Object-Oriented Software”
– 24 design patterns

N.	
 Meng,	
 B.	
 Ryder	
 49	

Purpose-based Pattern Classification

•  Creational
– About the process of object creation

•  Structural
– About composition of classes or objects

•  Behavioral
– About how classes or objects interact and

distribute responsibility

N.	
 Meng,	
 B.	
 Ryder	
 50	

1/28/16	

26	

Design pattern space

N.	
 Meng,	
 B.	
 Ryder	
 51	

Visitor Pattern

•  Scenario: Given a set of objects in a
heterogeneous aggregate structure,
such as a tree, you want to define and
perform various distinct and unrelated
operations on them

N.	
 Meng,	
 B.	
 Ryder	
 52	

1/28/16	

27	

Example

N.	
 Meng,	
 B.	
 Ryder	
 53	

<<interface>>
Graphic

Draw()

Picture
parts: Graphic[]

Draw()

Line

Draw()

Rectangle

Draw()

Triangle

Draw()

•  What will you do if you always need to
add operations to the objects, such as
Add(), Remove(), Update()?

Visitor Pattern
•  You want to limit the scope of introduced

changes
– Within a class vs. across different classes

•  You want to avoid “polluting” the node
classes with various operations

•  Create a Visitor class hierarchy that
defines a virtual visit() method for each
node type

•  Add a virtual accept() method to the base
class of all node classes

N.	
 Meng,	
 B.	
 Ryder	
 54	

1/28/16	

28	

Visitor Pattern

N.	
 Meng,	
 B.	
 Ryder	
 55	

<<interface>>
Graphic

accept(v: Visitor)

Picture
parts: Graphic[]

accept(v: Visitor)

Line

accept(v: Visitor)

Rectangle

accept(v: Visitor)

Triangle

accept(v: Visitor)

<<interface>>
Visitor

visit(g: Picture)

visit(g: Rectangle)
visit(g: Line)

visit(g: Triangle)

DrawVisitor

…

UpdateVisitor

…

