
5/10/16	

1	

Finding Bugs is Easy [2]

Overview

•  Motivation
•  Problem
•  Approach
•  Experiments

2	

5/10/16	

2	

Motivation

•  Bugs are a serious problem
•  Many techniques developed to

automatically find bugs
– Formal methods
– Sophisticated program analysis

•  Existing techniques are difficult to
apply, and aren’t always effective in
finding real bugs

3	

Problem

•  How to detect bugs using simple and
brad techniques, rather than focused
and narrow techniques?

4	

5/10/16	

3	

Pattern-based Bug Detection

•  Bug patterns are code idioms that are
often errors

•  Start by looking at actual bugs in real
code, extract the bug patterns, and
then develop bug pattern detectors to
find similar bugs

5	

Bug Pattern Detectors

•  45 bug pattern detectors are
implemented using BCEL

•  Four categories of detectors:
– Single-threaded correctness issue
– Thread/synchronization correctness issue
– Performance issue
– Security and vulnerability to malicious

untrusted code

6	

5/10/16	

4	

Four categories of implementation
strategies

•  Class structure and inheritance hierarchy
only
– Some of the detectors simply look at the

structure of analyzed classes without looking at
the code

– E.g., equals() and hashcode() should be defined
together

•  Linear code scan
– No control flow analysis
– E.g., bad covariant definition of equals:
 public boolean equals(Foo obj) {…}

7	

Four categories of implementation
strategies

•  Control sensitive
– Control flow analysis
– E.g., WaitNotInLoop:
•  Object.wait() method waits on a monitor for

another thread to call notify() or notifyAll()
•  Usually, wait() is waiting for a particular condition

to become true
•  The most robust way is to put it in a loop, where

the waited-for condition is checked each time the
thread wakes up

8	

5/10/16	

5	

Four categories of implementation
strategies

•  Data flow
– Control and data flow analysis
– E.g., null pointer dereference
 if (foo == null)

{
 …
 foo.f …
}

9	

Selected Bug Pattern
Detectors

5/10/16	

6	

Inconsistent Synchronization

•  Detect fields which are sometimes
accessed with a self lock held and
sometimes without are candidate
instances

•  Several heuristics are used to reduce
the number of false positives
– Public or volatile fields are ignored
– Fields that are never read without a lock

are ignored (?)

11	

Inconsistent Synchronization

•  Heuristics to reduce false positives
(cont’d)
– Accesses in object lifecycle methods (such

as constructors and finalizers), or in
nonpublic methods reachable only from
these lifecycle methods, are ignored

– If there is a high proportion of unlocked
accesses (>=1/3), ignore it
•  2(RU + 2WU) > (RL + 2WL)

12	

5/10/16	

7	

Static Field Modifiable by Untrusted
Code

•  Untrusted code is allowed to modify
static fields, thereby modifying the
behavior of the library for all uses
– A static non-final field has public or

protected access
– A static final field has public or protected

access, and references a mutable structure
such as an array or Hashtable

– A method returns a reference to a static
mutable structure such as an array or
Hashtable

13	

Where are bug patterns from?

•  Many of the bug patterns are suggested
by Java semantics

•  A number of books describe potential
Java coding pitfalls

•  Several bug patterns are observed in
student projects and later implemented

•  Several bug patterns are suggested by
FindBugs users

14	

5/10/16	

8	

Evaluation

•  Run FindBugs on six applications
– GNU Classpath, version 0.08
– rt.jar from Sun JDK 1.5.0, build 59
– Eclipse, version 3.0
– DrJava, version stable-20040326
– JBoss, version 4.0.0RC1
– jEdit, version 4.2pre15

15	

16	

5/10/16	

9	

Interesting Observations

•  No type of bug has been so “dumb” or
“obvious” that we have failed to find
examples of it in real code

•  The potential for misuse of language
features and APIs is enormous

•  FindBugs can effectively raise the
awareness of developers about subtle
correctness issues

17	

Reference

[1] David Hovemeyer, William Pugh,
Finding Bugs is Easy, ACM SIGPLAN
Notices ‘04

18	

