Finding Bugs is Easy [2]

Overview

* Motivation

* Problem

« Approach

« Experiments

5/10/16



Motivation

« Bugs are a serious problem

* Many techniques developed to
automatically find bugs
— Formal methods
— Sophisticated program analysis

* Existing techniques are difficult to
apply, and aren't always effective in
finding real bugs

Problem

« How to detect bugs using simple and
brad techniques, rather than focused
and narrow techniques?

5/10/16



5/10/16

Pattern-based Bug Detection

* Bug patterns are code idioms that are
often errors

 Start by looking at actual bugs in real
code, extract the bug patterns, and
then develop bug pattern detectors to
find similar bugs

Bug Pattern Detectors

* 45 bug pattern detectors are
implemented using BCEL

 Four categories of detectors:
— Single-threaded correctness issue
— Thread/synchronization correctness issue
— Performance issue

— Security and vulnerability to malicious
untrusted code




Four categories of implementation
strategies

* Class structure and inheritance hierarchy

only
— Some of the detectors simply look at the
structure of analyzed classes without looking at

the code
— E.g., equals() and hashcode() should be defined

together
* Linear code scan

— No control flow analysis
— E.g., bad covariant definition of equals:
public boolean equals(Foo obj) {...}

Four categories of implementation
strategies

« Control sensitive
— Control flow analysis
— E.g., WaitNotInLoop:

* Object.wait() method waits on a monitor for
another thread to call notify() or notifyAll()

* Usually, wait() is waiting for a particular condition
to become true

 The most robust way is to put it in a loop, where
the waited-for condition is checked each time the

thread wakes up

5/10/16



5/10/16

Four categories of implementation
strategies

* Data flow
— Control and data flow analysis
— E.g., null pointer dereference

if (foo == null)
{

%.oo.f
}

Selected Bug Pattern
Detectors




Inconsistent Synchronization

« Detect fields which are sometimes
accessed with a self lock held and
sometimes without are candidate
instances

« Several heuristics are used to reduce
the number of false positives
— Public or volatile fields are ignored

— Fields that are never read without a lock
are ighored (?)

Inconsistent Synchronization

* Heuristics to reduce false positives

(cont'd)

— Accesses in object lifecycle methods (such
as constructors and finalizers), or in
nonpublic methods reachable only from
these lifecycle methods, are ignored

— If there is a high proportion of unlocked
accesses (>=1/3), ignore it
- 2(RU + 2WU) > (RL + 2WL)

5/10/16



Static Field Modifiable by Untrusted
Code

* Untrusted code is allowed to modify
static fields, thereby modifying the
behavior of the library for all uses

— A static non-final field has public or
protected access

— A static final field has public or protected
access, and references a mutable structure
such as an array or Hashtable

— A method returns a reference to a static

mutable structure such as an array or
Hashtable

Where are bug patterns from?

« Many of the bug patterns are suggested
by Java semantics

« A number of books describe potential
Java coding pitfalls

« Several bug patterns are observed in
student projects and later implemented

« Several bug patterns are suggested by
FindBugs users

5/10/16



Evaluation

* Run FindBugs on six applications
— 6GNU Classpath, version 0.08
—rt.jar from Sun JDK 1.5.0, build 59
— Eclipse, version 3.0
— DrJava, version stable-20040326
— JBoss, version 4.0.0RC1
— jEdit, version 4.2prel5

classpath-0.06 rt.jar 1.5.0 build 18

warnings serious harmless dubious false pos | warnings serious harmless dubious false pos
DC 0 — — — — 6 83% 0% 0% 16%
152 18 72% 16% 0% 11% 52 30% 63% 0% 5%
NP 7 85% 0% 0% 14% 21 95% 0% 0% 1%
0OS 9 22% 33% 22% 22% 5 0% 0% 0% 100%
RR 7 100% 0% 0% 0% 10 100% 0% 0% 0%
RV 11 45% 0% 0% 54% 2 100% 0% 0% 0%
UR 3 100% 0% 0% 0% 3 100% 0% 0% 0%
uw 2 0% 0% 0% 100% 6 33% 0% 0% 66%
Wa 2 0% 0% 0% 100% 6 16% 0% 0% 83%

eclipse-2.1.0 drjava-stable-20030822

warnings serious harmless dubious false pos | warnings serious harmless dubious false pos
NP 43 93% 0% 6% 0% 0 — — — —
0OS 16 6% 6% 18% 68% 5 40% 0% 40% 20%
RR 22 1% 0% 0% 95% 0 — — — —
RV 9 100% 0% 0% 0% 0 — — — —
UR 0 — — — — 1 100% 0% 0% 0%
UwW 0 — — — — 3 66% 0% 0% 33%

jboss-3.2.2RC3 jedit-4.1

warnings serious harmless dubious false pos | warnings serious harmless dubious false pos
1S2 2 50% 0% 0% 50% 1 0% 100% 0% 0%
NP 10 100% 0% 0% 0% 0 — — — —
0OS 2 100% 0% 0% 0% 1 100% 0% 0% 0%
RR 0 — — — — 1 100% 0% 0% 0%
RV 2 0% 0% 0% 100% 0 — — — —
UR 2 50% 0% 0% 50% 2 50% 0% 50% 0%
uw 1 100% 0% 0% 0% 1 100% 0% 0% 0%
Wa 0 — — . — 2 50% 0% 0% 16 50%

5/10/16



Interesting Observations

* No type of bug has been so "dumb" or
“obvious"” that we have failed to find
examples of it in real code

 The potential for misuse of language
features and APIs is enormous

* FindBugs can effectively raise the
awareness of developers about subtle
correctness issues

Reference

[1] David Hovemeyer, William Pugh,
Finding Bugs is Easy, ACM SIGPLAN
Notices '04

5/10/16



