
4/19/16	

1	

Program Static Analysis

Overview

•  Program static analysis
•  Abstract interpretation
•  Data flow analysis
– Intra-procedural
– Inter-procedural

2	

4/19/16	

2	

What is static analysis?

•  The analysis to understand computer
software without executing programs
– Simple coding style
•  Empty statement, EqualsHashcode

– Complex property of the program
•  the program’s implementation matches its

specification
– “Given program P and specification S, does P

satisfy S ?”
•  Can be conducted on source code or

object code
3	

Has anyone done static analysis?

•  Code review
•  …

4	

4/19/16	

3	

Why static analysis?

•  Program comprehension
– Is this value a constant?

•  Bug finding
– Is a file closed on every path after all its

access?
•  Program optimization
– Constant propagation

5	

An Informal Introduction to
Abstract Interpretation

Patrick Cousot[2]
Modified by Na Meng

4/19/16	

4	

Semantics & Safety

•  The concrete semantics of a program
formalizes (is a mathematical model of)
the set of all its possible executions in all
possible execution environments

•  Safety: No possible execution in any
possible execution environment can reach
an erroneous state

7	

Undecidability

•  The concrete semantics of a program is
undecidable
– Given an arbitrary program, can you prove

that it halts or not on any possible input?
– Turing proved no algorithm can exist that

always correctly decides whether, for a
given arbitrary program and its input, the
program halts when run with that input

8	

4/19/16	

5	

Abstract Semantics

•  A sound approximation (superset) of the
concrete semantics

•  It covers all possible concrete cases
•  If the abstract semantics is proved to be

safe, then so is the concrete semantics
•  Abstract interpretation
– abstract semantics + proof of safe

properties

9	

Why is Testing/Debugging
insufficient?

•  Only consider a subset of the possible
executions

•  No correctness proof
•  No guarantee of full coverage of

concrete semantics

10	

4/19/16	

6	

Static Analysis Techniques

•  Model checking
•  Theorem proving
•  Data flow analysis

11	

Model Checking

•  The abstract semantics is modeled as a
finite state machine of the program
execution

•  The model can be manually defined or
automatically computed

•  Each state is enumerated exhaustively
to automatically check whether this
model meets a given specification

12	

4/19/16	

7	

13	

import java.util.Random;
public class Rand {

 public static void main (String[] args) {
 Random random = new Random(42);// (1)
 int a = random.nextInt(2); // (2)
 System.out.println("a=" + a);

 int b = random.nextInt(3); // (3)
 System.out.println(" b=" + b);

 int c = a/(b+a - 2); // (4)
 System.out.println(" c=" + c);
 }

}

An Example [3]

Is there any
Divide-by-Zero

error?

Model Checking

14	

start a=0 a=1

5 6 7 8

c=0 c=0/0 c=-1 c=1/0 c=1

①  Random random = new Random()
②  int a = random.nextInt(2)

③  int b = random.nextInt(3)

④  int c = a/(b+a-2)

1 2
b=0

b=1
b=2 b=0

b=1
b=2

4 3

9 10 11 12 13

What if there
is any loop?

4/19/16	

8	

Limitations of Model Checking

•  There can be too many states to
enumerate

•  Abstract model creation puts burden on
programmers

•  The model may be wrong
– If verification fails, is the problem in the

model or the program?

15	

An axiomatic approach [4]

•  Add auxiliary specifications to the
program to decompose the verification
task into a set of local verification tasks

•  Verify each local verification problem

16	

4/19/16	

9	

Limitations

•  Auxiliary spec is burden on programmers
•  Auxiliary spec might be incorrect
•  If verification fails, is the problem with

the auxiliary specification or the
program?

17	

Theorem Proving

18	

Meets spec/Found Bug

Theorem
in a logic

Program

Specification

Semantics

VC
generation

Validity

Provability
(theorem proving)

•  Soundness
– If the theorem is valid then the program

meets specification
– If the theorem is provable then it is valid

4/19/16	

10	

•  From programs to theorems
– Verification condition generation

•  From theorems to proofs
– Theorem provers

19	

Verification Condition Generation

•  State predicates/assertions: Boolean
functions on program states
– E.g., x = 8, x < y, true, false

•  You can deduce verification condition
predicates from known predicates at a
given program location

20	

4/19/16	

11	

Hoare Triples [6]

•  For any predicates P and Q and program S,

 says that if S is started in a state
 satisfying P, then it terminates in Q
– E.g., {true} x := 12 {x = 12}, {x < 40} x := x+1 {x ≤

40}

21	

postcondi5on	

precondi5on	

{P} S {Q}

Precise Triples

•  If {P} S {Q ∧ R} holds, then
do {P} S {Q} and {P} S {R} hold?

•  Strongest postcondition
– The most precise postcondition (Q ∧ R),

which implies any postcondition satisfied by
the final state of any execution x of S

– E.g., {true} x := 12 {x = 12} vs. {true} x:=12
{x > 0}, which postcondition is stronger?

22	

4/19/16	

12	

Precise Triples

•  If {P} S {R} or {Q} S {R} hold, then
does {P ∨ Q} S {R} hold?

•  Weakest preconditions
– The most general precondition {P ∨ Q}, is the

“weakest” precondition on the initial state
ensuring that execution of S terminates in a
final state satisfying R.

– E.g., {x=13} x = x+3 {x >13} vs. {x>10} x = x+3 {x
>13}, which precondition is weaker?

23	

Example: Does the program satisfy
the specification?

•  Specification
requires true (precondition)
ensures c = a ∨ b (postcondition)

•  Program

24	

bool or(bool a, bool b) {
 if (a)
 c := true;
 else
 c := b;
 return c
}

4/19/16	

13	

Theorem Proving

•  Step 1
– Given the post condition, infer the weakest

precondition of the program
•  Step 2
– Verify that if the given precondition can

infer the weakest precondition
•  If so, the program satisfies the specification
•  Otherwise, it does not

25	

Weakest Precondition Rules

26	

•  WP(x := E, B) = B[E/x]
•  WP(s1; s2, B) = WP(s1, WP(s2, B))
•  WP(if E then s1 else s2, B) = (E =>

WP(s1, B)) ∧ (E => WP(s2, B))
•  WP(assert E, B) = E ∧ B
•  What is the WP of our example

program?
– WP(S) = (a=>true=a∨b)∧(a=>b=a∨b)

¬

¬

4/19/16	

14	

•  Conjecture to be proved:
– true=> (a=>true=a∨b)∧(a=>b=a∨b)

27	

Data Flow Analysis [5]

Peter Lee
Modified by Na Meng

4/19/16	

15	

Data Flow Analysis

•  A technique to gather information about
the possible set of values calculated at
various points in a computer program

29	

How to do data flow analysis?

•  Set up data-flow equations for each node
of the control flow graph

•  Solve the equation set iteratively, until

reaching a fixpoint: all in-states do not
change

30	

outb = trans(inb)
inb = joinp∈predb (outp)

for i ← 1 to N
 initialize node i
while (sets are still changing)
 for i ← 1 to N
 recompute sets at node i

4/19/16	

16	

Work List Iterative Algorithm

for i ← 1 to N
 initialize node i
 add node i to worklist
while (worklist is not empty)
 remove a node n from worklist
 calculate out-state based on in-state
 if out-state is different from the original value
 worklist = worklist U succ(n)

31	

Directions of Data Flow Analysis

•  Forward
– Calculate output-states based on input-

states
•  Backward
– Calculate input-states based on output-

states

32	

4/19/16	

17	

An Example [7]

1: int N = input()
2: initialize array A[N + 1]
3: call check(N)
4: int I = 1
5: while (I < N) {
6: A(I) = A(I) + I
7: I = I + 1 }
8: print A(N) 33	

1	

2	

4	

5	

6	

7	

8	

entry	

exit	

•  What variable definitions reach the
current program point?

3	

Reaching Definition

•  A definition at program point d reaches
program point u if there is a control-
flow path from d to u that does not
contain a definition of the same variable
as d

34	

4/19/16	

18	

Reaching Definition Equations
•  Forward analysis

•  genb: variable definitions generated by b
•  killb: definitions killed at b by

redefinitions of the variable(s)
•  initialization: in = {}

35	

inb =∪p∈predb
(outp)

outb = genb ∪ (inb − killb)

Using Reaching Definition

•  Constant propagation

•  Detection of uninitialized variables

36	

int x = 5;
int y = 7;
int z = x + y;
int w = x – y;

int x;
if (…)
 x = 1;
…
a = x;

4/19/16	

19	

Using Reaching Definition

•  Loop-invariant Code Motion
– Consider an expression inside a loop. If all

reaching definitions are outside of the loop,
then move the expression out of the loop

37	

Revisit the Example[7]

1: int N = input()
2: initialize array A[N + 1]
3: call check(N)
4: int I = 1
5: while (I < N) {
6: A(I) = A(I) + I
7: I = I + 1 }
8: print A(N) 38	

1	

2	

4	

5	

6	

7	

8	

entry	

exit	

•  What variable definitions are or will be
actually used?

3	

4/19/16	

20	

Live-out Variables

•  A variable v is live-out of statement n
if v is used along some control path
starting at n. Otherwise, we say that v
is dead
– “What variables definitions are actually

used?”

39	

Liveness Analysis Equations

•  Backward analysis

•  genb: variables used by b
•  killb: if v is defined without using v, all

its prior definitions are killed
•  initialization: out = {}

40	

outb =∪p∈succb
(inp)

inb = outb − killb∪genb

4/19/16	

21	

Using Liveness Analysis

•  Dead code elimination
– Suppose we have a statement defining a

variable, whose value is not used, then the
definition can be removed without any side
effect

41	

Available Expression

•  An expression e is available at
statement n if
–  it is computed along every path from entry

node to n, and
– no variable used in e gets redefined

between e’s computation and n

42	

4/19/16	

22	

•  What are the available expressions at 5?
•  What direction is the analysis?
•  How to define genb and killb?
•  What are the equations for inb and outb?

43	

1: c = a + b
2: d = a * c
3: e = d * d
4: i = 1
5: f[i] = a + b
6: c = c * 2
7: if c > d goto 10
8: g[i] = d * d
9: goto 11
10: g[i] = a * c
11: i = i + 1
12: if i <= 10 goto 5

BB1:1-‐4	

BB2:5-‐7	

BB3:8-‐9	 BB4:10	

BB5:11-‐12	

entry	

exit	

Using Available Expressions

•  Common-subexpression elimination

44	

4/19/16	

23	

Our analyses so far

45	

Reaching
definitions

Available
expressions

Live
variables

ba
ck

wa
rd

 f
or

wa
rd

 union intersection

Questions

•  Does work list iterative algorithm
always terminate?

46	

4/19/16	

24	

Lattices

•  A lattice L is a (possibly infinite) set of
values, along with and operations
–  unique w and z such that
 and
–  and
–  and
–  such that and

47	

∪ ∩

∀x, y ∈ L,∃

x∪ y = w x∩ y = z

∀x, y ∈ L, x∪ y = y∪ x x∩ y = y∩ x

∀x, y, z ∈ L, (x∪ y)∪ z = x∪ (y∪ z) (x∩ y)∩ z = x∩ (y∩ z)

∃⊥,Τ ∈ L, ∀x ∈ L, x∩⊥=⊥ x∪Τ = Τ

Monotonic Functions

•  The join and meet operators induce a
partial order on the lattice elements
–  if and only if
– reflexive, anti-symmetric, transitive

•  For a lattice L, a function f: L->L is
monotonic if for all x, y
–  or

48	

x ⊆ y x∩ y = x

∈ L

x ⊆ y⇒ f (x)⊆ f (y) x ⊆ y⇒ f (x)⊇ f (y)

4/19/16	

25	

Reaching definition is monotonic

•  Proof (for single-variable single-block
programs) by contradiction:
– Suppose , where 1 means

there is a variable definition, 0 means no
definition, then .

– However, only if the block b has a
redefinition of the variable, which means

49	

outb = genb ∪ (inb − killb)

inb = {1},outb = {0}

genb = {0},killb = {1}
killb = {1}

genb = {1}

•  Therefore, after limited number of
iterations (N* (E+1) at worst case),
every definition is propagated to every
node

•  Therefore, we can find a fixpoint p,
such that f(p) = p

50	

4/19/16	

26	

In dataflow analysis, we require
that all flow functions be monotone

and have only finite-length
effective chains

Ingredients of a Dataflow Analysis

•  Flow direction
•  Transfer function
•  Meet operator (Join function)
•  Dataflow information
– Set of definitions, variables, and

expressions
–  initialization
– How about concrete data values?

52	

4/19/16	

27	

Constant Propagation

53	

1: c = 3
2: d = 5
3: e = c + d
4: f = input()
5: if (f>0)
6: e = 0
7: g = d + e

•  What is the value of variables at 4 and 7?
•  How do you define the data flow analysis?

Constant-propagation Analysis

•  For a single-variable program
– Direction: forward
– Transfer function:
– Dataflow value: elements in CP-lattice
– Meet operator(Join function): CP-lattice
– Initialization:

54	

⊥

outb = genb ∪ (inb − killb)

∪

⊥

⊥

-2 -1 0 1 2 … …
⊥ means “uninitialized variable”

means “not a constant” ⊥

4/19/16	

28	

Inter-procedural Analysis [8]

Stephen Chong
Imported by Na Meng

Procedures

•  So far we have looked at intra-
procedural analysis: analyzing a single
procedure

•  Inter-procedural analysis uses calling
relationships among procedures
– Connect intra-procedural analysis results

via call edges
– Enable more precise analysis information

56	

4/19/16	

29	

Inter-procedural CFG
void main() {
 x = 7;
 r = p(x);
 x = r;
 z = p(x+10);
}
int p(int a) {
 int y;
 if (a < 9)
 y = 0;
 else
 y = 1;
 return y;
} 57	

Entry	 main	

x	 =	 7	

call	 p(x)	

r	 =	 return	 p(x)	

x	 =	 r	

call	 p(x+10)	

z	 =	 return	 p(x+10)	

Exit	 main	

Entry	 p	

a	 <	 9	

y	 =	 0	 y	 =	 1	

return	 y;	

Exit	 p	

Imprecision

•  Dataflow facts from one call site can
“taint” results at other call sites
– Is z a constant?

58	

4/19/16	

30	

Inlining
•  Make a copy of the callee’s CFG at each

call site

59	

Entry	 main	

x	 :=	 7	

Call	 p(x)	

r	 :=	 Return	 p(x)	

x	 :=	 r	

Call	 p(x+10)	

z	 :=	 return	 p(x+10)	

Exit	 main	

Entry	 p	

a	 <	 9	

y	 :=	 0	 y	 :=	 1	

return	 y;	

Exit	 p	

Entry	 p	

a	 <	 9	

y	 :=	 0	 y	 :=	 1	

return	 y;	

Exit	 p	

Exponential Size Increase

•  How about recursive function calls?
– p(int n) {… p(n - 1);…}

•  The exponential increase makes analysis
infeasible

60	

4/19/16	

31	

Context Sensitivity

•  Make a finite number of copies
•  Use context information to determine

when to share a copy
– Different decisions achieve different

tradeoffs between precision and scalability
•  Common choice: approximation call stack

61	

An Example

62	

Context
insensitivity

main	

b()	 e()	

c()	 f()	

d()	 g()	

Context sensitive,
1-stack depth

main	

b()	 e()	

c()	 f()	

d()	 g()	

c()	

d()	

f()	

g()	

Context sensitive,
2-stack depth

main	

b()	 e()	

c()	 f()	

d g

c()	

d

f()	

g d g d g

4/19/16	

32	

Procedure Summaries

•  In practice, people don’t construct a
single global CFG and then perform
dataflow

•  Instead, construct and use procedure
summaries

•  Summarize effect of callees on callers
– E.g., is there any side effect on callers?

•  Summarize effect of callers on callees
– E.g., is any parameter constant?

63	

Other Contexts

•  Object/pointer sensitivity
– What is the type of a given object and

what are the corresponding possible
method targets?

– What is the value of a given object’s field?

64	

4/19/16	

33	

Pointer Analysis

65	

•  What is the points-to set of p?
int x = 3;
int y = 0;
int* p = unknown() ? &x : & y;

•  Alias analysis
– Decide whether separate memory

references point to the same area of
memory

– Can be used interchangeably with pointer
analysis (points-to analysis)

Flow Sensitivity

•  Flow insensitive analysis
– Perform analysis without caring about the

statement execution order
•  E.g., analysis of c1;c2 will be the same as c2;c1
•  Address-taken, Steensgaard, Anderson

•  Flow sensitive analysis
– Observes the statement execution order

66	

4/19/16	

34	

An Example

1: a = &b
2: b = &c
3: f = &d
4: d = &e
5: a = f

67	

a -> b -> c
f -> d -> e

1 2

3 4

•  After 5, both *a and *f point to d

Address Taken

•  Assume that variables whose addresses
are taken may be referenced by all
pointers
– Address-taken variables: b, c, d, e
– A single alias pointer set: {a, b, f, d}

68	

1: a = &b
2: b = &c
3: f = &d
4: d = &e
5: a = f

a -> b -> c
f -> d -> e

1 2

3 4

4/19/16	

35	

Steensgaard

•  Constraints
– p = &x: x pts-to(p)
– p = q: pts-to(p) = pts-to(q)
– p = *q pts-to(q), pts-to(p)=pts-to(a)
– *p = q pts-to(p), pts-to(b)=pts-to(q)

69	

∈

∀a ∈

∀b∈

1: a = &b
2: b = &c
3: f = &d
4: d = &e
5: a = f

a -> b -> c
f -> d -> e

1 2

3 4 ->
 ->

– Points-to set: pts(a) = pts(f)
={b, d}

Andersen

•  Subset Constraints
– p = &x: x pts-to(p)
– p = q: pts-to(q) pts-to(p)
– p = *q pts-to(q), pts-to(a) pts-to(a)
– *p = q pts-to(p), pts-to(q) pts-to(b)

70	

∈

∀a ∈

∀b∈

⊆

⊆

⊆

1: a = &b
2: b = &c
3: f = &d
4: d = &e
5: a = f

a -> b -> c
f -> d -> e

1 2

3 4

– Points-to set: pts(a)={b, d},
pts(f)={d}

->

4/19/16	

36	

Flow-sensitive Pointer Analysis

•  x = y: strong update
– kill—clear pts(x)
– gen—add pts(y) to pts(x)

•  *x = y:
– If x definitely points to a single concrete

memory location z, pts(z) = y (strong update)
– If x may point to multiple locations, then week
update by adding y to pts of all locations 71	

inb =∪p∈predb
(outp)

outb = genb ∪ (inb − killb)

Reference
[1] Static program analysis,
https://en.wikipedia.org/wiki/Static_program_analysis
[2] Patrick Cousot, A Tutorial on Abstract Interpretation,
http://homepage.cs.uiowa.edu/~tinelli/classes/seminar/Cousot--A
%20Tutorial%20on%20AI.pdf
[3] Software Model Checking Example, http://
javapathfinder.sourceforge.net/sw_model_checking.html
[4] Automated Theorem Proving,
https://courses.cs.washington.edu/courses/cse599f/06sp/
lectures/atp1.ppt
[5] Peter Lee, Classical Dataflow Optimizations,
http://www.cs.cmu.edu/afs/cs/academic/class/15745-s06/web/
handouts/04.pdf
[6] K. Rustan M. Leino, Hoare-style program verification,
http://research.microsoft.com/en-us/um/people/leino/papers/
cse503-Leino-Lecture0.ppt.

72	

4/19/16	

37	

Reference

[7] Kathryn S. McKinley, Data Flow
Analysis and Optimizations,
http://www.cs.utexas.edu/users/
mckinley/380C/lecs/03.pdf
[8] Stephen Chong, Interprocedural
Analysis,
http://www.seas.harvard.edu/courses/
cs252/2011sp/slides/Lec05-
Interprocedural.pdf

 73	

