Program Static Analysis

Overview

- Program static analysis
- Abstract interpretation
- Data flow analysis
 - Intra-procedural
 - Inter-procedural
What is static analysis?

• The analysis to understand computer software without executing programs
 – Simple coding style
 • Empty statement, EqualsHashCode
 – Complex property of the program
 • the program’s implementation matches its specification
 – “Given program P and specification S, does P satisfy S?”
• Can be conducted on source code or object code

Has anyone done static analysis?

• Code review
• …
Why static analysis?

• Program comprehension
 – Is this value a constant?

• Bug finding
 – Is a file closed on every path after all its access?

• Program optimization
 – Constant propagation

An Informal Introduction to Abstract Interpretation

Patrick Cousot[2]
Modified by Na Meng
Semantics & Safety

• The *concrete semantics* of a program formalizes (is a mathematical model of) the set of all its possible executions in all possible execution environments

• **Safety**: No possible execution in any possible execution environment can reach an erroneous state

Undecidability

• The *concrete semantics* of a program is undecidable
 – *Given an arbitrary program, can you prove that it halts or not on any possible input?*
 – Turing proved no algorithm can exist that always correctly decides whether, for a given arbitrary program and its input, the program halts when run with that input
Abstract Semantics

• A sound approximation (superset) of the concrete semantics
• It covers all possible concrete cases
• If the abstract semantics is proved to be safe, then so is the concrete semantics
• Abstract interpretation
 – abstract semantics + proof of safe properties

Why is Testing/Debugging insufficient?

• Only consider a subset of the possible executions
• No correctness proof
• No guarantee of full coverage of concrete semantics
Static Analysis Techniques

- Model checking
- Theorem proving
- Data flow analysis

Model Checking

- The abstract semantics is modeled as a finite state machine of the program execution
- The model can be manually defined or automatically computed
- Each state is enumerated exhaustively to automatically check whether this model meets a given specification
import java.util.Random;
public class Rand {
 public static void main (String[] args) {
 Random random = new Random(42); // (1)
 int a = random.nextInt(2); // (2)
 System.out.println("a=" + a);

 int b = random.nextInt(3); // (3)
 System.out.println(" b=" + b);
 int c = a/(b+a-2); // (4)
 System.out.println(" c=" + c);
 }
}
Limitations of Model Checking

- There can be too many states to enumerate
- Abstract model creation puts burden on programmers
- The model may be wrong
 - If verification fails, is the problem in the model or the program?

An axiomatic approach [4]

- Add auxiliary specifications to the program to decompose the verification task into a set of local verification tasks
- Verify each local verification problem
Limitations

- Auxiliary spec is burden on programmers
- Auxiliary spec might be incorrect
- If verification fails, is the problem with the auxiliary specification or the program?

Theorem Proving

- Soundness
 - If the theorem is valid then the program meets specification
 - If the theorem is provable then it is valid
• From programs to theorems
 – Verification condition generation

• From theorems to proofs
 – Theorem provers

Verification Condition Generation

• State predicates/assertions: Boolean functions on program states
 – E.g., \(x = 8 \), \(x < y \), true, false

• You can deduce verification condition predicates from known predicates at a given program location
Hoare Triples [6]

• For any predicates P and Q and program S,

$$\{ P \} \ S \ \{ Q \}$$

says that if S is started in a state satisfying P, then it terminates in Q

– E.g., $\{ \text{true} \} \ x := 12 \ \{ x = 12 \}, \{ x < 40 \} \ x := \ x + 1 \ \{ x \leq 40 \}$

Precise Triples

• If $\{ P \} \ S \ \{ Q \land R \}$ holds, then
 do $\{ P \} \ S \ \{ Q \}$ and $\{ P \} \ S \ \{ R \}$ hold?

• Strongest postcondition
 – The most precise postcondition $(Q \land R)$, which implies any postcondition satisfied by the final state of any execution x of S

$$\forall x, sp(S, P) \Rightarrow Q$$

– E.g., $\{ \text{true} \} \ x := 12 \ \{ x = 12 \}$ vs. $\{ \text{true} \} \ x := 12 \ \{ x > 0 \}$, which postcondition is stronger?
Precise Triples

• If \{P\} S \{R\} or \{Q\} S \{R\} hold, then does \{P \lor Q\} S \{R\} hold?

• Weakest preconditions
 – The most general precondition \{P \lor Q\}, is the “weakest” precondition on the initial state ensuring that execution of S terminates in a final state satisfying R.

 \[\forall x, P \Rightarrow wp(S, R) \]
 – E.g., \{x=13\} x = x+3 \{x>13\} vs. \{x>10\} x = x+3 \{x>13\}, which precondition is weaker?

Example: Does the program satisfy the specification?

• Specification
 requires true (precondition)
 ensures \(c = a \lor b\) (postcondition)

• Program

```c
bool or(bool a, bool b) {
    if (a)
        c := true;
    else
        c := b;
    return c
}
```
Theorem Proving

• Step 1
 – Given the post condition, infer the weakest precondition of the program

• Step 2
 – Verify that if the given precondition can infer the weakest precondition
 • If so, the program satisfies the specification
 • Otherwise, it does not

Weakest Precondition Rules

• \(WP(x := E, B) = B[E/x] \)
• \(WP(s1; s2, B) = WP(s1, WP(s2, B)) \)
• \(WP(\text{if } E \text{ then } s1 \text{ else } s2, B) = (E \Rightarrow WP(s1, B)) \land (\neg E \Rightarrow WP(s2, B)) \)
• \(WP(\text{assert } E, B) = E \land B \)
• What is the WP of our example program?
 – \(WP(S) = (a \Rightarrow \text{true} = a \lor b) \land (\neg a \Rightarrow b = a \lor b) \)
• Conjecture to be proved:
 – \(\text{true} \Rightarrow (a \Rightarrow \text{true} = a \lor b) \land (a \Rightarrow b = a \lor b) \)

Data Flow Analysis [5]

Peter Lee
Modified by Na Meng
Data Flow Analysis

• A technique to gather information about the possible set of values calculated at various points in a computer program

How to do data flow analysis?

• Set up data-flow equations for each node of the control flow graph

\[
\begin{align*}
 \text{out}_b &= \text{trans}(\text{in}_b) \\
 \text{in}_p &= \text{join}_{p \in \text{pred}}(\text{out}_p)
\end{align*}
\]

• Solve the equation set iteratively, until reaching a fixpoint: all in-states do not change

for \(i \leftarrow 1 \) to \(N \)

initialize node \(i \)

while (sets are still changing)

for \(i \leftarrow 1 \) to \(N \)

recompute sets at node \(i \)
Work List Iterative Algorithm

for $i \leftarrow 1$ to N
 initialize node i
 add node i to worklist
while (worklist is not empty)
 remove a node n from worklist
 calculate out-state based on in-state
 if out-state is different from the original value
 worklist = worklist \cup succ(n)

Directions of Data Flow Analysis

• Forward
 – Calculate output-states based on input-states
• Backward
 – Calculate input-states based on output-states
An Example [7]

- What variable definitions reach the current program point?
 1: int \(N = \text{input()} \)
 2: initialize array \(A[N + 1] \)
 3: call check(N)
 4: int \(I = 1 \)
 5: while \((I < N) \) {
 6: \(A(I) = A(I) + I \)
 7: \(I = I + 1 \) }
 8: print \(A(N) \)

Reaching Definition

- A definition at program point \(d \) reaches program point \(u \) if there is a control-flow path from \(d \) to \(u \) that does not contain a definition of the same variable as \(d \)
Reaching Definition Equations

- Forward analysis

\[out_b = gen_b \cup (in_b - kill_b) \]
\[in_b = \bigcup_{p \in \text{pred}_b} (out_p) \]

- \(gen_b \): variable definitions generated by \(b \)
- \(kill_b \): definitions killed at \(b \) by redefinitions of the variable(s)
- initialization: \(in = {} \)

Using Reaching Definition

- Constant propagation

 \begin{verbatim}
 int x = 5;
 int y = 7;
 int z = x + y;
 int w = x - y;
 \end{verbatim}

- Detection of uninitialized variables

 \begin{verbatim}
 int x;
 if (...)
 x = 1;
 ...
 a = x;
 \end{verbatim}
Using Reaching Definition

• Loop-invariant Code Motion
 – Consider an expression inside a loop. If all reaching definitions are outside of the loop, then move the expression out of the loop

Revisit the Example[7]

• What variable definitions are or will be actually used?

1: int N = input()
2: initialize array A[N + 1]
3: call check(N)
4: int I = 1
5: while (I < N) {
 6: A(I) = A(I) + I
 7: I = I + 1
}
8: print A(N)
Live-out Variables

- A variable v is **live-out** of statement n if v is used along some control path starting at n. Otherwise, we say that v is dead.
 - “What variables definitions are actually used?”

Liveness Analysis Equations

- Backward analysis
 $$in_b = out_b - kill_b \cup gen_b$$
 $$out_b = \bigcup_{p \in succ_b} (in_p)$$

- gen_b: variables used by b
- $kill_b$: if v is defined without using v, all its prior definitions are killed
- Initialization: $out = \{\}$
Using Liveness Analysis

- Dead code elimination
 - Suppose we have a statement defining a variable, whose value is not used, then the definition can be removed without any side effect

Available Expression

- An expression e is available at statement n if
 - it is computed along every path from entry node to n, and
 - no variable used in e gets redefined between e's computation and n
1: \(c = a + b \)
2: \(d = a * c \)
3: \(e = d * d \)
4: \(i = 1 \)
5: \(f[i] = a + b \)
6: \(c = c * 2 \)
7: if \(c > d \) goto 10
8: \(g[i] = d * d \)
9: goto 11
10: \(g[i] = a * c \)
11: \(i = i + 1 \)
12: if \(i <= 10 \) goto 5

- What are the available expressions at 5?
- What direction is the analysis?
- How to define \(gen_b \) and \(kill_b \)?
- What are the equations for \(in_b \) and \(out_b \)?

Using Available Expressions

- Common-subexpression elimination
Our analyses so far

<table>
<thead>
<tr>
<th>backward</th>
<th>forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>union</td>
<td>intersection</td>
</tr>
<tr>
<td>Reaching definitions</td>
<td>Available expressions</td>
</tr>
<tr>
<td>Live variables</td>
<td></td>
</tr>
</tbody>
</table>

Questions

• Does work list iterative algorithm always terminate?
Lattices

• A lattice L is a (possibly infinite) set of values, along with \cup and \cap operations

 $\forall x, y \in L, \exists$ unique w and z such that

 $x \cup y = w$ and $x \cap y = z$

 $\forall x, y \in L, x \cup y = y \cup x$ and $x \cap y = y \cap x$

 $\forall x, y, z \in L, (x \cup y) \cup z = x \cup (y \cup z)$ and $(x \cap y) \cap z = x \cap (y \cap z)$

 $\exists \bot, T \in L, such that \forall x \in L, x \cap \bot = \bot$ and $x \cup T = T$

Monotonic Functions

• The join and meet operators induce a partial order on the lattice elements

 $x \subseteq y$ if and only if $x \cap y = x$

 reflexive, anti-symmetric, transitive

• For a lattice L, a function $f: L \rightarrow L$ is monotonic if for all $x, y \in L$

 $x \subseteq y \Rightarrow f(x) \subseteq f(y)$ or $x \subseteq y \Rightarrow f(x) \supseteq f(y)$
Reaching definition is monotonic

\[\text{out}_b = \text{gen}_b \cup (\text{in}_b - \text{kill}_b) \]

- Proof (for single-variable single-block programs) by contradiction:
 - Suppose \(\text{in}_b = \{1\}, \text{out}_b = \{0\} \), where 1 means there is a variable definition, 0 means no definition, then \(\text{gen}_b = \{0\}, \text{kill}_b = \{1\} \).
 - However, \(\text{kill}_b = \{1\} \) only if the block \(b \) has a redefinition of the variable, which means \(\text{gen}_b = \{1\} \)

- Therefore, after limited number of iterations (\(N^* (E+1) \) at worst case), every definition is propagated to every node
- Therefore, we can find a fixpoint \(p \), such that \(f(p) = p \)
In dataflow analysis, we require that all flow functions be monotone and have only finite-length effective chains.

Ingredients of a Dataflow Analysis

- Flow direction
- Transfer function
- Meet operator (Join function)
- Dataflow information
 - Set of definitions, variables, and expressions
 - Initialization
 - How about concrete data values?
Constant Propagation

1: \(c = 3 \)
2: \(d = 5 \)
3: \(e = c + d \)
4: \(f = \text{input()} \)
5: \(\text{if } (f > 0) \)
6: \(e = 0 \)
7: \(g = d + e \)

- What is the value of variables at 4 and 7?
- How do you define the data flow analysis?

Constant-propagation Analysis

- For a single-variable program
 - Direction: forward
 - Transfer function: \(\text{out}_b = \text{gen}_b \cup (\text{in}_b - \text{kill}_b) \)
 - Dataflow value: elements in CP-lattice
 - Meet operator (Join function): CP-lattice \(\cup \)
 - Initialization: \(\bot \)

\(\bot \) means "uninitialized variable"
\(\bot \) means "not a constant"
Inter-procedural Analysis [8]

Stephen Chong
Imported by Na Meng

Procedures

• So far we have looked at intra-procedural analysis: analyzing a single procedure
• Inter-procedural analysis uses calling relationships among procedures
 – Connect intra-procedural analysis results via call edges
 – Enable more precise analysis information
void main() {
 x = 7;
 r = p(x);
 x = r;
 z = p(x+10);
}
int p(int a) {
 int y;
 if (a < 9)
 y = 0;
 else
 y = 1;
 return y;
}

Imprecision

• Dataflow facts from one call site can “taint” results at other call sites
 – Is \(z \) a constant?
Inlining

- Make a copy of the callee's CFG at each call site

Exponential Size Increase

- How about recursive function calls?
 - \(p(int n) \{ ... p(n - 1); ... \} \)
- The exponential increase makes analysis infeasible
Context Sensitivity

- Make a finite number of copies
- Use context information to determine when to share a copy
 - Different decisions achieve different tradeoffs between precision and scalability
- Common choice: approximation call stack

An Example

Context insensitivity

```
main
  b()  e()
    c()  f()
      d()  g()
```

Context sensitive, 1-stack depth

```
main
  b()  e()
    c()  f()
      c()  f()
```

Context sensitive, 2-stack depth

```
main
  b()  e()
    c()  f()
      c()  f()
        d()  g()
```

Procedure Summaries

- In practice, people don’t construct a single global CFG and then perform dataflow
- Instead, construct and use **procedure summaries**
- Summarize effect of callees on callers
 - E.g., is there any side effect on callers?
- Summarize effect of callers on callees
 - E.g., is any parameter constant?

Other Contexts

- Object/pointer sensitivity
 - What is the type of a given object and what are the corresponding possible method targets?
 - What is the value of a given object’s field?
Pointer Analysis

• What is the points-to set of p?

  ```
  int x = 3;
  int y = 0;
  int* p = unknown() ? &x : &y;
  ```

• Alias analysis
 – Decide whether separate memory references point to the same area of memory
 – Can be used interchangeably with pointer analysis (points-to analysis)

Flow Sensitivity

• Flow insensitive analysis
 – Perform analysis without caring about the statement execution order
 • E.g., analysis of c1;c2 will be the same as c2;c1
 • Address-taken, Steensgaard, Anderson

• Flow sensitive analysis
 – Observes the statement execution order
An Example

1: a = &b
2: b = &c
3: f = &d
4: d = &e
5: a = f

• After 5, both *a and *f point to d

Address Taken

• Assume that variables whose addresses are taken may be referenced by all pointers
 – Address-taken variables: b, c, d, e
 – A single alias pointer set: {a, b, f, d}

1: a = &b
2: b = &c
3: f = &d
4: d = &e
5: a = f
Steensgaard

- **Constraints**
 - \(p \equiv &x : x \in \text{pts-to}(p) \)
 - \(p \equiv q : \text{pts-to}(p) = \text{pts-to}(q) \)
 - \(p \equiv *q \ \forall a \in \text{pts-to}(q), \text{pts-to}(p) = \text{pts-to}(a) \)
 - \(*p \equiv q \ \forall b \in \text{pts-to}(p), \text{pts-to}(b) = \text{pts-to}(q) \)

1: \ a = &b	\rightarrow	a \rightarrow b \rightarrow c
2: \ b = &c	\rightarrow	 \rightarrow c
3: \ f = &d	\rightarrow	f \rightarrow d \rightarrow e
4: \ d = &e		
5: \ a = f		

Points-to set: \(\text{pts}(a) = \text{pts}(f) = \{b, d\} \)

Andersen

- **Subset Constraints**
 - \(p \equiv &x : x \in \text{pts-to}(p) \)
 - \(p \equiv q : \text{pts-to}(q) \subseteq \text{pts-to}(p) \)
 - \(p \equiv *q \ \forall a \in \text{pts-to}(q), \text{pts-to}(a) \subseteq \text{pts-to}(a) \)
 - \(*p \equiv q \ \forall b \in \text{pts-to}(p), \text{pts-to}(q) \subseteq \text{pts-to}(b) \)

1: \ a = &b	\rightarrow	a \rightarrow b \rightarrow c
2: \ b = &c	\rightarrow	 \rightarrow c
3: \ f = &d	\rightarrow	f \rightarrow d \rightarrow e
4: \ d = &e		
5: \ a = f		

Points-to set: \(\text{pts}(a) = \{b, d\} \), \(\text{pts}(f) = \{d\} \)
Flow-sensitive Pointer Analysis

\[out_b = gen_b \cup (in_b - \text{kill}_b) \]
\[in_b = \bigcup_{p \in \text{pred}_b} (out_p) \]

- \(x = y \): **strong update**
 - kill—clear \(\text{pts}(x) \)
 - \(\text{gen} \)—add \(\text{pts}(y) \) to \(\text{pts}(x) \)
- \(*x = y \):
 - If \(x \) definitely points to a single concrete memory location \(z \), \(\text{pts}(z) = y \) (strong update)
 - If \(x \) may point to multiple locations, then **weak update** by adding \(y \) to \(\text{pts} \) of all locations

Reference

Reference
