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Program Static Analysis 

Overview 

•  Program static analysis 
•  Abstract interpretation 
•  Data flow analysis 
– Intra-procedural  
– Inter-procedural 
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What is static analysis? 

•  The analysis to understand computer 
software without executing programs 
– Simple coding style 
•  Empty statement, EqualsHashcode 

– Complex property of the program 
•  the program’s implementation matches its 

specification 
– “Given program P and specification S, does P 

satisfy S ?” 
•  Can be conducted on source code or 

object code 
3	  

Has anyone done static analysis? 

•  Code review 
•  … 

4	  
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Why static analysis? 

•  Program comprehension 
– Is this value a constant? 

•  Bug finding 
– Is a file closed on every path after all its 

access? 
•  Program optimization 
– Constant propagation 

5	  

An Informal Introduction to 
Abstract Interpretation 

Patrick Cousot[2]  
Modified by Na Meng 
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Semantics & Safety 

•  The concrete semantics of a program 
formalizes (is a mathematical model of)  
the set of all its possible executions in all 
possible execution environments 

•  Safety: No possible execution in any 
possible execution environment can reach 
an erroneous state 

7	  

Undecidability 

•  The concrete semantics of a program is 
undecidable 
– Given an arbitrary program, can you prove 

that it halts or not on any possible input? 
– Turing proved no algorithm can exist that 

always correctly decides whether, for a 
given arbitrary program and its input, the 
program halts when run with that input 

8	  
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Abstract Semantics 

•  A sound approximation (superset) of the 
concrete semantics 

•  It covers all possible concrete cases 
•  If the abstract semantics is proved to be 

safe, then so is the concrete semantics 
•  Abstract interpretation 
– abstract semantics + proof of safe 

properties 

9	  

Why is Testing/Debugging 
insufficient? 

•  Only consider a subset of the possible 
executions 

•  No correctness proof 
•  No guarantee of full coverage of 

concrete semantics 

10	  
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Static Analysis Techniques 

•  Model checking 
•  Theorem proving 
•  Data flow analysis 

11	  

Model Checking 

•  The abstract semantics is modeled as a 
finite state machine of the program 
execution 

•  The model can be manually defined or 
automatically computed 

•  Each state is enumerated exhaustively 
to automatically check whether this 
model meets a given specification 

12	  
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import java.util.Random; 
public class Rand { 

 public static void main (String[] args) { 
  Random random = new Random(42);// (1) 
  int a = random.nextInt(2);           // (2) 
  System.out.println("a=" + a); 

   ... ...   
  int b = random.nextInt(3);           // (3) 
  System.out.println("  b=" + b); 
  
  int c = a/(b+a - 2);                  // (4) 
  System.out.println("    c=" + c);          
 } 

} 

An Example [3] 

Is there any 
Divide-by-Zero 

error? 

Model Checking 

14	  

start a=0 a=1 

5 6 7 8 

c=0 c=0/0 c=-1 c=1/0 c=1 

①  Random random = new Random() 
②  int a = random.nextInt(2) 

③  int b = random.nextInt(3) 

④  int c = a/(b+a-2) 

1 2 
b=0 

b=1 
b=2 b=0 

b=1 
b=2 

4 3 

9 10 11 12 13 

What if there 
is any loop? 
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Limitations of Model Checking 

•  There can be too many states to 
enumerate 

•  Abstract model creation puts burden on 
programmers 

•  The model may be wrong 
– If verification fails, is the problem in the 

model or the program? 

15	  

An axiomatic approach [4] 

•  Add auxiliary specifications to the 
program to decompose the verification 
task into a set of local verification tasks 

•  Verify each local verification problem 

16	  
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Limitations 

•  Auxiliary spec is burden on programmers 
•  Auxiliary spec might be incorrect 
•  If verification fails, is the problem with 

the auxiliary specification or the 
program? 

17	  

Theorem Proving 

18	  

Meets spec/Found Bug  

Theorem  
in a logic 

Program 

Specification 

Semantics 

VC 
generation 

Validity 

Provability 
(theorem proving) 

•  Soundness 
– If the theorem is valid then the program 

meets specification 
– If the theorem is provable then it is valid 
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•  From programs to theorems 
– Verification condition generation 

•  From theorems to proofs 
– Theorem provers 

19	  

Verification Condition Generation 

•  State predicates/assertions: Boolean 
functions on program states 
– E.g., x = 8, x < y, true, false 

•  You can deduce verification condition 
predicates from known predicates at a 
given program location 

20	  
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Hoare Triples [6] 

•  For any predicates P and Q and program S,  
 
 
 

 says that if S is started in a state  
    satisfying P, then it terminates in Q 
– E.g., {true} x := 12 {x = 12}, {x < 40} x := x+1 {x ≤ 

40} 

21	  

postcondi5on	  

precondi5on	  

{P} S {Q} 
 

Precise Triples 

•  If {P} S {Q ∧ R} holds, then  
do {P} S {Q} and {P} S {R}  hold? 

•  Strongest postcondition 
– The most precise postcondition (Q ∧ R), 

which implies any postcondition satisfied by 
the final state of any execution x of S 

– E.g., {true} x := 12 {x = 12} vs. {true} x:=12 
{x > 0}, which postcondition is stronger?  
 

22	  
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Precise Triples 

•  If {P} S {R} or {Q} S {R} hold, then  
does {P ∨ Q} S {R}  hold? 

•  Weakest preconditions 
– The most general precondition {P ∨ Q}, is the 

“weakest” precondition on the initial state 
ensuring that execution of S terminates in a 
final state satisfying R. 

– E.g., {x=13} x = x+3 {x >13} vs. {x>10} x = x+3 {x 
>13}, which precondition is weaker?  

23	  

Example: Does the program satisfy 
the specification? 

•  Specification 
requires true (precondition) 
ensures c = a ∨ b (postcondition) 

•  Program 

24	  

bool or(bool a, bool b) { 
    if (a) 
      c := true; 
    else  
      c := b; 
    return c 
} 
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Theorem Proving 

•  Step 1 
– Given the post condition, infer the weakest 

precondition of the program 
•  Step 2 
– Verify that if the given precondition can 

infer the weakest precondition 
•  If so, the program satisfies the specification 
•  Otherwise, it does not 

25	  

Weakest Precondition Rules 

26	  

•  WP(x := E, B) = B[E/x] 
•  WP(s1; s2, B) = WP(s1, WP(s2, B)) 
•  WP(if E then s1 else s2, B) = (E => 

WP(s1, B)) ∧ (  E => WP(s2, B)) 
•  WP(assert E, B) = E ∧ B 
•  What is the WP of our example 

program? 
– WP(S) = (a=>true=a∨b)∧(  a=>b=a∨b)  

¬

¬
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•  Conjecture to be proved: 
– true=> (a=>true=a∨b)∧(  a=>b=a∨b)  

27	  

Data Flow Analysis [5] 

Peter Lee 
Modified by Na Meng 
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Data Flow Analysis 

•  A technique to gather information about 
the possible set of values calculated at 
various points in a computer program 

29	  

How to do data flow analysis? 

•  Set up data-flow equations for each node 
of the control flow graph 

 
•  Solve the equation set iteratively, until 

reaching a fixpoint: all in-states do not 
change 

                                    

30	  

outb = trans(inb )
inb = joinp∈predb (outp )

for i ← 1 to N 
    initialize node i 
while (sets are still changing) 
    for i ← 1 to N 
        recompute sets at node i 
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Work List Iterative Algorithm 

for i ← 1 to N  
    initialize node i 
    add node i to worklist 
while (worklist is not empty) 
    remove a node n from worklist 
    calculate out-state based on in-state 
    if out-state is different from the original value 
        worklist = worklist U succ(n) 

31	  

Directions of Data Flow Analysis 

•  Forward  
– Calculate output-states based on input-

states 
•  Backward 
– Calculate input-states based on output-

states 

32	  
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An Example [7] 

1: int N = input() 
2: initialize array A[N + 1] 
3: call check(N) 
4: int I = 1 
5: while (I < N) { 
6:     A(I) = A(I) + I 
7:     I = I + 1 } 
8: print A(N) 33	  

1	  

2	  

4	  

5	  

6	  

7	  

8	  

entry	  

exit	  

•  What variable definitions reach the 
current program point?  

3	  

Reaching Definition 

•  A definition at program point d reaches 
program point u if there is a control-
flow path from d to u that does not 
contain a definition of the same variable 
as d 

34	  
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Reaching Definition Equations 
•  Forward analysis 

•  genb: variable definitions generated by b 
•  killb: definitions killed at b by 

redefinitions of the variable(s) 
•  initialization: in = {} 

35	  

inb =∪p∈predb
(outp )

outb = genb ∪ (inb − killb )

Using Reaching Definition 

•  Constant propagation 

 
•  Detection of uninitialized variables 

36	  

int x = 5; 
int y = 7; 
int z = x + y; 
int w = x – y; 

int x; 
if (…) 
    x = 1; 
… 
a = x; 
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Using Reaching Definition 

•  Loop-invariant Code Motion 
– Consider an expression inside a loop. If all 

reaching definitions are outside of the loop, 
then move the expression out of the loop 

37	  

Revisit the Example[7] 

1: int N = input() 
2: initialize array A[N + 1] 
3: call check(N) 
4: int I = 1 
5: while (I < N) { 
6:     A(I) = A(I) + I 
7:     I = I + 1 } 
8: print A(N) 38	  

1	  

2	  

4	  

5	  

6	  

7	  

8	  

entry	  

exit	  

•  What variable definitions are or will be 
actually used?  

3	  
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Live-out Variables 

•  A variable v is live-out of statement n 
if v is used along some control path 
starting at n. Otherwise, we say that v 
is dead 
– “What variables definitions are actually 

used?” 

39	  

Liveness Analysis Equations 

•  Backward analysis 

•  genb: variables used by b 
•  killb: if v is defined without using v, all 

its prior definitions are killed  
•  initialization: out = {} 

40	  

outb =∪p∈succb
(inp )

inb = outb − killb∪genb
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Using Liveness Analysis 

•  Dead code elimination 
– Suppose we have a statement defining a 

variable, whose value is not used, then the 
definition can be removed without any side 
effect 

41	  

Available Expression 

•  An expression e is available at 
statement n if  
–  it is computed along every path from entry 

node to n, and  
– no variable used in e gets redefined 

between e’s computation and n 

42	  
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•  What are the available expressions at 5? 
•  What direction is the analysis? 
•  How to define genb and killb? 
•  What are the equations for inb and outb? 

43	  

1:  c = a + b 
2:  d = a * c 
3:  e = d * d 
4:  i = 1 
5:  f[i] = a + b 
6:  c = c * 2 
7:  if c > d goto 10 
8:  g[i] = d * d 
9:  goto 11 
10:  g[i] = a * c 
11:  i = i + 1 
12: if i <= 10 goto 5 

BB1:1-‐4	  

BB2:5-‐7	  

BB3:8-‐9	   BB4:10	  

BB5:11-‐12	  

entry	  

exit	  

Using Available Expressions 

•  Common-subexpression elimination 

44	  
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Our analyses so far 

45	  

Reaching 
definitions 

Available 
expressions 

Live  
variables 

ba
ck

wa
rd

 f
or

wa
rd

 union intersection 

Questions 

•  Does work list iterative algorithm 
always terminate? 

46	  
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Lattices 

•  A lattice L is a (possibly infinite) set of 
values, along with    and     operations 
–              unique w and z such that  
            and 
–                          and 
–                                       and 
–              such that                  and 

47	  

∪ ∩

∀x, y ∈ L,∃

x∪ y = w x∩ y = z

∀x, y ∈ L, x∪ y = y∪ x x∩ y = y∩ x

∀x, y, z ∈ L, (x∪ y)∪ z = x∪ (y∪ z) (x∩ y)∩ z = x∩ (y∩ z)

∃⊥,Τ ∈ L, ∀x ∈ L, x∩⊥=⊥ x∪Τ = Τ

Monotonic Functions 

•  The join and meet operators induce a 
partial order on the lattice elements 
–        if and only if 
– reflexive, anti-symmetric, transitive 

•  For a lattice L, a function f: L->L is 
monotonic if for all x, y 
–                         or  

48	  

x ⊆ y x∩ y = x

∈ L

x ⊆ y⇒ f (x)⊆ f (y) x ⊆ y⇒ f (x)⊇ f (y)
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Reaching definition is monotonic 

•  Proof (for single-variable single-block 
programs) by contradiction:  
– Suppose                            , where 1 means 

there is a variable definition, 0 means no 
definition, then                             . 

– However,               only if the block b has a 
redefinition of the variable, which means 

49	  

outb = genb ∪ (inb − killb )

inb = {1},outb = {0}

genb = {0},killb = {1}
killb = {1}

genb = {1}

•  Therefore, after limited number of 
iterations (N* (E+1) at worst case), 
every definition is propagated to every 
node 

•  Therefore, we can find a fixpoint p, 
such that f(p) = p 

50	  
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In dataflow analysis, we require 
that all flow functions be monotone 

and have only finite-length 
effective chains 

Ingredients of a Dataflow Analysis 

•  Flow direction 
•  Transfer function 
•  Meet operator (Join function) 
•  Dataflow information 
– Set of definitions, variables, and 

expressions 
–  initialization 
– How about concrete data values? 

52	  
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Constant Propagation 

53	  

1: c = 3 
2: d = 5 
3: e = c + d 
4: f = input() 
5: if (f>0) 
6:    e = 0 
7: g = d + e 

•  What is the value of variables at 4 and 7? 
•  How do you define the data flow analysis? 

Constant-propagation Analysis 

•  For a single-variable program 
– Direction: forward 
– Transfer function: 
– Dataflow value: elements in CP-lattice 
– Meet operator(Join function): CP-lattice  
– Initialization:  

54	  

⊥

outb = genb ∪ (inb − killb )

∪

⊥

⊥

-2 -1 0 1 2 … … 
⊥ means “uninitialized variable” 

means “not a constant” ⊥
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Inter-procedural Analysis [8] 

Stephen Chong 
Imported by Na Meng 

Procedures 

•  So far we have looked at intra-
procedural analysis: analyzing a single 
procedure 

•  Inter-procedural analysis uses calling 
relationships among procedures 
– Connect intra-procedural analysis results 

via call edges 
– Enable more precise analysis information 

56	  
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Inter-procedural CFG 
void main() { 
    x = 7; 
    r = p(x); 
    x = r; 
    z = p(x+10); 
} 
int p(int a) { 
    int y; 
    if (a < 9) 
        y = 0; 
    else  
        y = 1; 
    return y; 
} 57	  

Entry	  main	  

x	  =	  7	  

call	  p(x)	  

r	  =	  return	  p(x)	  

x	  =	  r	  

call	  p(x+10)	  

z	  =	  return	  p(x+10)	  

Exit	  main	  

Entry	  p	  

a	  <	  9	  

y	  =	  0	   y	  =	  1	  

return	  y;	  

Exit	  p	  

Imprecision 

•  Dataflow facts from one call site can 
“taint” results at other call sites 
– Is z a constant? 

58	  
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Inlining 
•  Make a copy of the callee’s CFG at each 

call site 

59	  

Entry	  main	  

x	  :=	  7	  

Call	  p(x)	  

r	  :=	  Return	  p(x)	  

x	  :=	  r	  

Call	  p(x+10)	  

z	  :=	  return	  p(x+10)	  

Exit	  main	  

Entry	  p	  

a	  <	  9	  

y	  :=	  0	   y	  :=	  1	  

return	  y;	  

Exit	  p	  

Entry	  p	  

a	  <	  9	  

y	  :=	  0	   y	  :=	  1	  

return	  y;	  

Exit	  p	  

Exponential Size Increase 

•  How about recursive function calls? 
– p(int n) {… p(n - 1);…} 

•  The exponential increase makes analysis 
infeasible 

60	  
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Context Sensitivity 

•  Make a finite number of copies 
•  Use context information to determine 

when to share a copy 
– Different decisions achieve different 

tradeoffs between precision and scalability 
•  Common choice: approximation call stack 

61	  

An Example 

62	  

Context  
insensitivity 

main	  

b()	   e()	  

c()	   f()	  

d()	   g()	  

Context sensitive,  
1-stack depth 

main	  

b()	   e()	  

c()	   f()	  

d()	   g()	  

c()	  

d()	  

f()	  

g()	  

Context sensitive,  
2-stack depth 

main	  

b()	   e()	  

c()	   f()	  

d g

c()	  

d

f()	  

g d g d g
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Procedure Summaries 

•  In practice, people don’t construct a 
single global CFG and then perform 
dataflow 

•  Instead, construct and use procedure 
summaries 

•  Summarize effect of callees on callers 
– E.g., is there any side effect on callers? 

•  Summarize effect of callers on callees 
– E.g., is any parameter constant? 

63	  

Other Contexts 

•  Object/pointer sensitivity 
– What is the type of a given object and 

what are the corresponding possible 
method targets? 

– What is the value of a given object’s field? 

64	  
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Pointer Analysis 

65	  

•  What is the points-to set of p? 
int x = 3; 
int y = 0; 
int* p = unknown() ? &x : & y; 

•  Alias analysis 
– Decide whether separate memory 

references point to the same area of 
memory 

– Can be used interchangeably with pointer 
analysis (points-to analysis) 

Flow Sensitivity 

•  Flow insensitive analysis 
– Perform analysis without caring about the 

statement execution order 
•  E.g., analysis of c1;c2 will be the same as c2;c1 
•  Address-taken, Steensgaard, Anderson 

•  Flow sensitive analysis 
– Observes the statement execution order 

66	  



4/19/16	  

34	  

An Example 

1: a = &b 
2: b = &c 
3: f = &d 
4: d = &e 
5: a = f 

67	  

a -> b -> c 
f -> d -> e 

1 2 

3 4 

•  After 5, both *a and *f point to d 

Address Taken 

•  Assume that variables whose addresses 
are taken may be referenced by all 
pointers 
– Address-taken variables: b, c, d, e 
– A single alias pointer set: {a, b, f, d} 

   
 

68	  

1: a = &b 
2: b = &c 
3: f = &d 
4: d = &e 
5: a = f 

a -> b -> c 
f -> d -> e 

1 2 

3 4 
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Steensgaard 

•  Constraints 
– p = &x: x   pts-to(p) 
– p = q:    pts-to(p) = pts-to(q) 
– p = *q          pts-to(q), pts-to(p)=pts-to(a) 
– *p = q          pts-to(p), pts-to(b)=pts-to(q) 

69	  

∈

∀a ∈

∀b∈

1: a = &b 
2: b = &c 
3: f = &d 
4: d = &e 
5: a = f 

a -> b -> c 
f -> d -> e 

1 2 

3 4 ->
  ->  

– Points-to set: pts(a) = pts(f) 
={b, d} 

Andersen 

•  Subset Constraints 
– p = &x: x   pts-to(p) 
– p = q:    pts-to(q)   pts-to(p) 
– p = *q          pts-to(q), pts-to(a)   pts-to(a) 
– *p = q          pts-to(p), pts-to(q)   pts-to(b) 

70	  

∈

∀a ∈

∀b∈

⊆

⊆

⊆

1: a = &b 
2: b = &c 
3: f = &d 
4: d = &e 
5: a = f 

a -> b -> c 
f -> d -> e 

1 2 

3 4 

– Points-to set: pts(a)={b, d}, 
pts(f)={d} 

->  
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Flow-sensitive Pointer Analysis 

•  x = y: strong update 
– kill—clear pts(x) 
– gen—add pts(y) to pts(x) 

•  *x = y: 
– If x definitely points to a single concrete 

memory location z, pts(z) = y (strong update) 
– If x may point to multiple locations, then week 
update by adding y to pts of all locations 71	  

inb =∪p∈predb
(outp )

outb = genb ∪ (inb − killb )
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