
Homework Assignment: No tool is perfect.

The first objective of this assignment is to become aware that even well-written, com-
mercial, tried-and-true software can produce wrong answers without any warning signs. The
second objective is to learn how to recover once you understand what is going on. The moral
of the homework is ”Never use a numerical method until you understand how it works. No
black boxes”.

1 Definitions

Let’s call function f(x) nice if it is defined everywhere on [-1, 1], −10 < f(x) < 10, the
function is infinitely differentiable on [-1, 1], and has a single minimum on (-1, 1) (trivial
case of extrema at the ends are excluded). Suppose you use a numerical procedure to solve for
the minimum, that is to find xnum for which f(xnum) → min. We call a numerical solution
right if |xnum − xexact| < 10−3, xexact being the exact answer. Otherwise, the solution is
called wrong. Note that our definition is very generous: generically, one expects the correct
solution to be within

√
ǫ of the exact, that is within ∼ 10−7.

1.1 Part I. Explore. 10 pts

Use Mathematica to explore the straightforward Newton’s method for finding local minimum.
First, read up and thoroughly understand the method. Wiki has a surprisingly good intro
article on it. Follow up with any textbook. Nice functions have only one minimum by
definition, so not to worry. Use FindMinimum[]; let Mathematica select all input parameters
automatically, except the method ”Newton”, which you specify explicitly. You may use the
template provided. Explore a nice function f(x) = ax2+ bx4, consider limiting cases such as
a = 0, b = 0, and some intermediates. Present convergence graphs (use FindMinimumPlot[]).
Make your conclusions.

1.1.1 Solution sketch

Start with b = 0, a = 1, notice how you get the exact solution in one step. This is because
Newton’s is exact for quadratic function. For nearly quadratic functions, it converges fast
(quadratically) to the exact solution. Now set b = 0.01 and notice the slowdown. In the
a = 0, b = 1 case the convergence is even slower: this is because f(x) deviates more and
more from ideal quadratic, that is becoming more and more “shallow than a parabola” near
its minimum, and so the iteration step |xn+1 − xn| = f ′(xn)/f

′′(xn) is getting smaller as N
grows. Generically, iterative methods stop iterating if some convergence criteria are satisfied.
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e.g. |xn+1 − xn| < tol (with tol ∼ √
ǫ ) or if too many iterations n have been made. You

can see how one or both of these can occur for a function that is very shallow (much more
shallow than x2 ) around its minimum.

Figure 1: Convergence of Newton’s minimization method. Each iteration step is shown by a

circle. Left: Single step convergence for f(x) = x2. Right: Much slower convergence for

f(x) = x4.

1.2 Part II. Break. 20 pts

Now that you understand how Newton’s method works, show it! Come up with a nice

function that breaks it, that is Mathematica gives a wrong solution (see above defs.)
without so much as a peep (no warnings or errors). Present convergence graphs (use Find-
MinimumPlot[]). Explain the failure.

1.2.1 Solution sketch

You have inferred in part II that Newton’s works progressively worse as the function deviates
from pure parabola: the shallower the minimum, the slower the iterative process. This
suggest that a very shallow minimum might break the method: a little experimenting with
f(x) = xN shows that N = 20 does the trick (on my machine). Here is the Mathematica
output in this case: Value of X that minimizes F, xmin = −0.0240265, F (xmin) = 4.10968∗
10−33. The ”solution”, xnum = −0.0240265 is wrong by our definition above. Obviously,
x20 is not a unique f(x) here. Depending on yiur version of Mathematica, you may need a
larger N , in the range 20-40. For example, for N = 40 you may get xmin = −0.148953,
F (xmin) = 8.3564 ∗ 10−34.

1.3 Part III. Fix. 10 pts

See if you can harness Mathematica’s unique functionality and options to make it find the
right solution, using the same Newton’s. In fact, you may be able to get to it within

√
ǫ

(Find what machine epsilon is for your machine. Use code on the class site). Explain why the
solution, while useful in research, is not very useful in situations where you need to quickly
find lots of minima as part of a larger code written in a standard language such as C.
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1.3.1 Solution sketch

By now you know what is happening: Newton’s converging too slowly for x20 near the exact
minimum x = 0. So, a straightforward, albeit not very effective, remedy is to up the number
of iterations. However, setting MaxIterations → 10000 gives the same wrong answer ”Value
of X that minimizes F, xmin = -0.0240265”.

The problem is that beyond a certain number of iterations, xn+1 and xn become indis-
tinguishable within the standard machine precision, and the algorithm stops. Here is where
the power of Mathematica comes in: you can set any precision for the numbers and functions
you are computing. Add WorkingPrecision → 400 to FindMinimum[] options, and you
will get the position of the minimum to within 10−199 from the exact answer xexact = 0.

(On a different version fo Mathematica with N = 40 you may get xmin = 10−113 with
the above settings. )

This is an overkill, but makes the point. The iterations will take appreciably longer
though. Implementing an arbitrary precision arithmetic in your regular code is cumbersome,
and the calculations will take a long time. Not worth it in most case. A good solution is
to recognize that the problem is ”ill conditioned” in some sense and solve it in a different
way. Sometime more primitive but robust approaches help. But, generally, ill-conditioned
problems require special, problem-specific treatment. This is where Mathematica excells: as
a research tool.
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