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CSP and ADA
Guarded Commands
• Monitor/Serializer: begin executing every call as soon

as possible, waiting if the object is not in a proper
state and signaling when the state is proper

• CSP/Ada: the called object establishes conditions
under which the call is accepted; calls not satisfying
these conditions are held pending (no need for
programmed wait/signal operations).

Rendezvous
• Monitor/Serializer: the monitor/ synchronizer is

passive (has no independent task/thread/activity)
• CSP/Ada: synchronization between peer, autonomous

activities.
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CSP and ADA

Distribution:
– Monitor/Serializer: inherently non-distributed in

outlook and implementation

–  CSP/Ada: possibility for distributed programming
using synchronous message passing

send

receivesend
receive

reply message

call message
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Communicating Sequential Processes (CSP)

• single thread of control
• autonomous
• encapsulated
• named
• static

•  synchronous
•  reliable
•  unidirectional
•  point-to-point
•  fixed topology

sequential 
process

communication
channel
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Communicating Sequential Processes (CSP)

operators:
? (receive)

! (send)

usage:

Send to

A!x

message

receive from

B?y

buffer

A B

A!x B?y

x y
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Communicating Sequential Processes (CSP)

• rendezvous semantics: senders (receivers) remain blocked
at send (receive) operation until a matching receive (send)
operation is made.

• typed messages: the type of the message sent by the
sender and the type of the message expected by the
receiver must match (otherwise abort).

A!vec(x,y) B?vec(s,t)

OK

A!count(x) B?index(y)

NO
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Communicating Sequential Processes (CSP)

Guarded Commands

<guard> --> <command list>

boolean expression

only one ? , must be at end of guard,
considered true iff message pending

Examples

n < 10 --> A!index(n); n := n + 1; 
n < 10; A?index(n) --> next = A(n); 



CS 5204 Spring 99 7

Communicating Sequential Processes (CSP)

Alternative Command
[ G1 --> S1 [] G2 --> S2 [] ... [] Gn --> Sn ]
1. evaluate all guards
2. if more than on guard is true, nondeterministically select
one.
3. if no guard is true, terminate.
Note: if all true guards end with an input command for which
there is no pending message, then delay the evaluation until a
message arrives. If all senders have terminated, then the
alternative command terminates.

Repetitive Command
* [ G1 --> S1 [] G2 --> S2 [] ... [] Gn --> Sn ]
repeatedly execute the alternative command
until it terminates
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Communicating Sequential Processes (CSP)
Examples:

[x >= y --> m := x [] y >= x --> m ;+ y ]

i := 0; * [ i < size; content(i) != n --> i := i + 1 ]

* [ c: character; west?c --> east!c ]

* [ n : integer; X?insert(n) --> INSERT

[]

n : integer; X?has(n) --> SEARCH; X!(i < size) ]

BoundedBuffer::

buffer: (0..9) portion;

in, out : integer; in := 0; out := 0;

* [ in < out + 10; producer?buffer(in mod 10)

--> in := in + 1;

[]

out < in; consumer?more()

--> consumer!buffer(out mod 10);

out := out + 1;

]
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ADA Example
task bounded-buffer is

entry store(x : buffer);
entry remove(y: buffer);

end;
task body bounded-buffer is
...declarations...
begin

loop
select

when head < tail + 10 =>
accept store(x : buffer) ... end store;

or
when tail < head =>
accept remove(y: buffer) ... end remove;

end select;
end loop

end


