
CS 5204 Spring 99 1

CSP and ADA
Guarded Commands
• Monitor/Serializer: begin executing every call as soon

as possible, waiting if the object is not in a proper
state and signaling when the state is proper

• CSP/Ada: the called object establishes conditions
under which the call is accepted; calls not satisfying
these conditions are held pending (no need for
programmed wait/signal operations).

Rendezvous
• Monitor/Serializer: the monitor/ synchronizer is

passive (has no independent task/thread/activity)
• CSP/Ada: synchronization between peer, autonomous

activities.

CS 5204 Spring 99 2

CSP and ADA

Distribution:
– Monitor/Serializer: inherently non-distributed in

outlook and implementation

– CSP/Ada: possibility for distributed programming
using synchronous message passing

send

receivesend
receive

reply message

call message

CS 5204 Spring 99 3

Communicating Sequential Processes (CSP)

• single thread of control
• autonomous
• encapsulated
• named
• static

• synchronous
• reliable
• unidirectional
• point-to-point
• fixed topology

sequential
process

communication
channel

CS 5204 Spring 99 4

Communicating Sequential Processes (CSP)

operators:
? (receive)

! (send)

usage:

Send to

A!x

message

receive from

B?y

buffer

A B

A!x B?y

x y

CS 5204 Spring 99 5

Communicating Sequential Processes (CSP)

• rendezvous semantics: senders (receivers) remain blocked
at send (receive) operation until a matching receive (send)
operation is made.

• typed messages: the type of the message sent by the
sender and the type of the message expected by the
receiver must match (otherwise abort).

A!vec(x,y) B?vec(s,t)

OK

A!count(x) B?index(y)

NO

CS 5204 Spring 99 6

Communicating Sequential Processes (CSP)

Guarded Commands

<guard> --> <command list>

boolean expression

only one ? , must be at end of guard,
considered true iff message pending

Examples

n < 10 --> A!index(n); n := n + 1;
n < 10; A?index(n) --> next = A(n);

CS 5204 Spring 99 7

Communicating Sequential Processes (CSP)

Alternative Command
[G1 --> S1 [] G2 --> S2 [] ... [] Gn --> Sn]
1. evaluate all guards
2. if more than on guard is true, nondeterministically select
one.
3. if no guard is true, terminate.
Note: if all true guards end with an input command for which
there is no pending message, then delay the evaluation until a
message arrives. If all senders have terminated, then the
alternative command terminates.

Repetitive Command
* [G1 --> S1 [] G2 --> S2 [] ... [] Gn --> Sn]
repeatedly execute the alternative command
until it terminates

CS 5204 Spring 99 8

Communicating Sequential Processes (CSP)
Examples:

[x >= y --> m := x [] y >= x --> m ;+ y]

i := 0; * [i < size; content(i) != n --> i := i + 1]

* [c: character; west?c --> east!c]

* [n : integer; X?insert(n) --> INSERT

[]

n : integer; X?has(n) --> SEARCH; X!(i < size)]

BoundedBuffer::

buffer: (0..9) portion;

in, out : integer; in := 0; out := 0;

* [in < out + 10; producer?buffer(in mod 10)

--> in := in + 1;

[]

out < in; consumer?more()

--> consumer!buffer(out mod 10);

out := out + 1;

]

CS 5204 Spring 99 9

ADA Example
task bounded-buffer is

entry store(x : buffer);
entry remove(y: buffer);

end;
task body bounded-buffer is
...declarations...
begin

loop
select

when head < tail + 10 =>
accept store(x : buffer) ... end store;

or
when tail < head =>
accept remove(y: buffer) ... end remove;

end select;
end loop

end

