CSP and ADA

Guarded Commands

« Monitor/Serializer: begin executing every call as soon
as possible, waiting if the object is not in a proper
state and signaling when the state is proper

« CSP/Ada: the called object establishes conditions
under which the call is accepted; calls not satisfying

these conditions are held pending (no need for
programmed wait/signal operations).

Rendezvous

* Monitor/Serializer: the monitor/ synchronizer is
passive (has no independent task/thread/activity)

o CSP/Ada: synchronization between peer, autonomous
activities.

CS 5204 Spring 99 1

CSP and ADA

Distribution:

— Monitor/Serializer: inherently non-distributed in
outlook and implementation

— CSP/Ada: possibility for distributed programming
using synchronous message passing

4 l I 4 I
call message v
send > Feceive
receive <—
l \ v
reply message | STd

CS 5204 Spring 99 2

Communicating Sequential Processes (CSP)

>

process

|

sequential

‘—

communication

 single thread of control

e autonomous
e encapsulated
e named

e static

CS 5204 Spring 99

channel

synchronous
reliable
unidirectional
point-to-point
fixed topology

Communicating Sequential Processes (CSP)

I (send)
operators.
? (receive)
usage:
Send to recfvefrom
AlX B?y
message bquer
A B
AlX B?y
X y

CS 5204 Spring 99

Communicating Sequential Processes (CSP)

rendezvous semantics: senders (receivers) remain blockec
at send (receive) operation until a matching receive (send)
operation is made.

typed messages: the type of the message sent by the
sender and the type of the message expected by the
receiver must match (otherwise abort).

A!vTc(x,y) B?vec(s,t)
OK
Alcount(x) B?index(y)

| T

NO

CS 5204 Spring 99 5

Communicating Sequential Processes (CSP)

Guarded Commands

<guard> --> <command list>

A

boolean expression

only one ? , must be at end of guard,
considered true iff message pending

Examples

n <10 --> Alindex(n); n:=n + 1,
n < 10; A?index(n) --> next = A(n);

CS 5204 Spring 99 6

Communicating Sequential Processes (CSP)

Alternative Command
[G1-->S1[]G2-->S2[]...[]Gn-->Sn]
1. evaluate all guards

2. 1If more than on guard is true, nondeterministically select
one.

3. If no guard istrue, terminate.

Note: if all true guards end with an input command for which
there Is no pending message, then delay the evaluation until a
message arrives. If all senders have terminated, then the
alternative command terminates.

Repetitive Command
*TG1-->S1[]G2-->S2[]...[]Gn-->Sn]
repeatedly execute the alternative command
until it terminates

CS 5204 Spring 99 7

Communicating Sequential Processes (CSP)

Examples:
X>=y->m:=x[ly>=x-->m;+y]
1:=0;*[1<size; content(i) I=n-->i:=i+ 1]

* [c: character; west?c --> east!c]
*[n :integer; X?insert(n) --> INSERT

1
n : integer; X?has(n) --> SEARCH,; XI!(i < size)]

BoundedBuffer::
buffer: (0..9) portion;
in, out : integer; in := 0; out := 0;
*[in < out + 10; producer?buffer(in mod 10)
->in:=in+1;

[

out < in; consumer?more()
--> consumer!buffer(out mod 10);

out := out + 1;

CS 5204 Spring 99

ADA Example

task bounded-buffer is
entry store(x : buffer);
entry remove(y: buffer);
end;
task body bounded-buffer is
...declarations...

begin
loop
select
when head < tail + 10 =>
accept store(x : buffer) ... end store;
or
when tail < head =>
accept remove(y: buffer) ... end remove;
end select;
end loop
end

CS 5204 Spring 99

