
Google’s BigTable

6 November 2012
Presenter: Jeffrey Kendall

jdk34@vt.edu

1

• Development began in 2004
at Google (published 2006)

• A need to store/handle large
amounts of (semi)-structured
data

BigTable Introduction

• Many Google projects
store data in BigTable

2

• Asynchronous processing across continuously
evolving data
• Petabytes in size

• High volume of concurrent reading/writing
spanning many CPUs

• Need ability to conduct analysis across many
subsets of data
• Temporal analysis (e.g. how to anchors or content

change over time?)
• Can work well with many clients, but not too

specific to clients’ needs

Goals of BigTable

3

BigTable in a Nutshell
• Distributed multi-level map
• Fault-tolerant
• Scalable

– Thousands of servers
– Terabytes of memory-based data
– Petabytes of disk-based data
– Millions of reads/writes per second

• Self-managing
– Dynamic server management

4

Building Blocks
• Google File System is used for BigTable’s

storage
• Scheduler assigns jobs across many CPUs and

watches for failures
• Lock service distributed lock manager
• MapReduce is often used to read/write data to

BigTable
– BigTable can be an input or output

5

Data Model
• “Semi” Three Dimensional datacube

– Input(row, column, timestamp) Output(cell contents)

6

html
…
at t1

R
ow

s

Columns

Time

“com.cnn.www”

.

.

.

.

“contents:”

More on Rows and Columns
Rows
• Name is an arbitrary string
• Are created as needed when new data is written that has

no preexisting row
• Ordered lexicographically so related data is stored on

one or a small number of machines

Columns
• Columns have two-level name structure

– family:optional_qualifier (e.g. anchor:cnnsi.com | anchor:
stanford.edu)

• More flexibility in dimensions
– Can be grouped by locality groups that are relevant to client

 7

Tablets
• The entire BigTable is split into tablets of

contiguous ranges of rows
– Approximately 100MB to
 200MB each

• One machine services 100 tablets
– Fast recovery in event of tablet failure
– Fine-grained load balancing
– 100 tablets are assigned non-deterministically to

avoid hot spots of data being located on one machine
• Tablets are split as their size grows

8

Tablet1

Tablet2

Implementation Structure

9

Master

Tablet server Tablet server Tablet server

GFS Cluster scheduling system Lock service

-Metadata operations
-Load balancing

-Serves data -Serves data -Serves data

-Handles failover and monitoring -Tablet data -Holds metadata
-Master election

Client/API
-Lock service: Open()
-Tablets server: Read()
 and Write()
-Master: CreateTable()
 and DeleteTable()

Locating Tablets
• Metadata for tablet locations and start/end row

are stored in a special Bigtable cell

10

-Stored in
 lock service
-Pointer to root

-Map of rows in
 second level
 of metadata

-Metadata for actual
 tablets
-Pointers to each
 tablet

-Tablets

Reading/Writing to Tablets
Write commands

– First write command gets put into a queue/log for
commands on that tablet

– Data is written to GFS and when this write command
is committed, queue is updated

• Mirror this write on the tablet’s buffer memory

Read commands
– Must combine the buffered commands not yet

committed with the data in GFS

11

API
• Metadata operations

– Create and delete tables, column families, change metadata

• Writes (atomic)
– Set(): write cells in a row
– DeleteCells(): delete cells in a row
– DeleteRow(): delete all cells in a row

• Reads
– Scanner: read arbitrary cells in BigTable

• Each row read is atomic
• Can restrict returned rows to a particular range
• Can ask for just data from one row, all rows, a subset of rows, etc.
• Can ask for all columns, just certainly column families, or specific columns

12

Shared Logging
• Logs are kept on a per tablet level

– Inefficient keep separate log files for each tablet tablet
(100 tablets per server)

– Logs are kept in 64MB chunks
• Problem: Recovery in machine failure becomes

complicated because many new machines are
all reading killed machine’s logs
– Many I/O operations

• Solved by master chunking killed machine’s log
file for each new machine

13

Compression
• Low CPU cost compression techniques are adopted
• Complete across each SSTable for a locality group

– Used BMDiff and Zippy building blocks of compression

• Keys: sorted strings of (Row, Column, Timestamp)
• Values

– Grouped by type/column family name
– BMDiff across all values in one family

• Zippy as final pass over a whole block
– Catches more localized repetitions
– Also catches cross-column family repetition

• Compression at a factor of 10 from empirical results

14

• Is being replaced by Google’s new database
Spanner (OSDI 2012)
• http://research.google.com/archive/spanner.html

• A more “true-time” focused API that can manage
data across all of Google’s datacenters

• Similar to a relational database but still relies on
primary key

• Some features: non-blocking reads in the past,
lock-free read-only transactions, and atomic
schema changes.

Spanner: The New BigTable

15

http://research.google.com/archive/spanner.html

• BigTable: A Distributed Storage System for
Structured Data by Fay Chang, Jeffrey Dean, et
all – published in 2004
• http://static.googleusercontent.com/external_content/untrusted_dlcp/res

earch.google.com/en/us/archive/bigtable-osdi06.pdf

• BigTable presentation by Google’s Jeffrey Dean
• http://video.google.com/videoplay?docid=7278544055668715642

Sources

16

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/archive/bigtable-osdi06.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/archive/bigtable-osdi06.pdf
http://video.google.com/videoplay?docid=7278544055668715642

	Google’s BigTable
	BigTable Introduction
	Goals of BigTable
	BigTable in a Nutshell
	Building Blocks
	Data Model
	More on Rows and Columns
	Tablets
	Implementation Structure
	Locating Tablets
	Reading/Writing to Tablets
	API
	Shared Logging
	Compression
	Spanner: The New BigTable
	Sources

