
This is a summary of the paper “Bigtable: A Distributed Storage System for Structured Data”. References 
are shorthanded as (x.y) where x is the page number and y is the paragraph on that page. 
 
Background 
Google’s Bigtable is a datastructure similar to, but not to be confused with a relational database (1.3). It 
is meant to be general enough to handle a wide variety of uses, but the primary drivers are extremely 
large data sets and high performance for the client (1.2). Currently more than 60 products use Bigtable 
and several hundred terabytes in practice (although petabyte size is theoretically possible) (1.2). 
 
Data Structure 
The basic unit of the table is the untyped string which at the lowest level are stored in sorted string 
tables or SSTables which are small enough to fit in RAM (3.9, 4.1). The SSTable is an immutable map of 
type (string key)  string data. Bigtable is exposed to the user as a three-dimensional map of type 
(string row, string col, int64 time)string data (1.3, 1.4). As a result of the underlying SSTable structure 
Bigtable is sorted lexicographically along row, col and time (2.3). The row and col keys can be 64KB in 
size, although that’s not usually necessary (2.2). 
 
The multi-dimensional map is divided into row ranges (i.e. A-D, E-F,G-P,Q-Z) referred to as a tablet (2.3, 
4.8). Each tablet can be between 100MB and 200MB (4.8). As data is added to the tablet range the 
tablet expands and eventually splits into two distinct tablets (i.e. A-D  A-B and C-D) (4.8). 
 
The multi-dimensional map is divided into column families based on user defined groups (2.4). The 
column family is created first as a data category (2.4). Each column is added to a column family and 
cannot exist on its own (2.4). Typically there are relatively few column families, but many more columns 
(2.4). The column keys are in the form Family_name:Column_name (2.5). Granularity at the column 
family level is used to control access, disk/memory accounting and garbage handling (2.6, 3.2). 
 
The multi-dimensional map automatically assigns “real” timestamps based on when data was entered 
(2.7). If a real timestamp is used, the possibility of collision is guaranteed not to occur (3.1). The client 
application can explicitly assign timestamps based on some internal versioning system (2.7). Version 
numbers are used in garbage collection either to maintain a maximum number of versions or maintain 
versions “younger” than an arbitrary age (3.2). 
 
Bigtable API 
The API has several means of controlling data access to improve performance and simplify coding. Read-
modify-write operations can be performed atomically on a single row regardless of the number columns 
updated (2.2, 3.6, Figure 2). Reads can be performed in sections based on a row range (3.5). Typically 
similar or nearly adjacent rows are on the same tablet and therefore can be accessed with one network 
call (2.3). Records can be fetched by specific rows, columns or versions based on various limiting factors 
such as matching regular expressions or a range of versions (3.5, Figure 3). New data can be written and 
old data deleted (3.5). Direct iteration over the fetched data can be used just as on any other collection 
library (3.5, 4.1). Client applications can also use the scripts written in Sawzall to instruct server-side 
data processing prior to the network fetch but specifically excluding any write operation (3.6). The API 
also allows map reduce function to work on Bigtable and produce Bigtable in a closed algebra (3.7). 
 
Client applications can improve performance in various ways beyond those imposed by the API. As 
noted above they can define the access control rights, disk/memory storage, versioning schemes and 
garbage handling functions for a column family (2.6, 3.2). The client application can also use their own 



“cleverness” in serializing the data and creating the row and column names (1.3). The client application 
can add/delete tables and column families as necessary (3.4). By analyzing the application domain, these 
properties may be used in conjunction with the abilities of the API to improve performance beyond that 
of a generic Bigtable. 
 
Server Address Discovery 
The Bigtable servers are discovered through a B-Tree with three levels (4.9). A bootstrap pointer is used 
to identify the location of the root tablet (4.9). The root tablet is unique in that it is never split (4.9). The 
root tablet points to a set of tablets which point to all the other tablets in the Bigtable (4.9). The root 
tablet and the set it points to are known collectively as the metadata table (4.9). The metadata table 
stores table name and end-row key values along with the address (4.10).  Even with a moderate tablet 
size the resulting address space can be very large (5.1). 
 
The system requires 3 network reads to discover any address (5.2). Although this system works for 
discovery, it is not necessary to always perform so many as addresses are aggressively cached and kept 
in larger-than necessary groups (5.2). Occasionally a tablet will have been moved so a search at the next 
highest level of the B-tree will be necessary (5.2). In the worst case scenario (all tables in the branch 
have been moved) six network reads are necessary (5.2). 
 
Server Failover and Recovery 
The table exist on a variety of servers, necessitating a management scheme encompassing failover and 
recovery (3.8). Availability statistics show an average of .0047% down time (4.3). A mainstay of the 
system’s reliability is the Chubby file system which is used throughout (4.3). Chubby creates 5 replicas of 
each file to avoid loss during failover (4.2). One copy is the master and the rest are kept current using 
the Paxos algorithm (4.2). Chubby’s use of files and folders with individual locks that must be maintained 
within a session (4.2). If a server, including the master, loses connectivity for too long its session will 
automatically expire and the lock will be lost (4.2, 5.6). If the master server loses its lock it will 
automatically kill itself. 
 
The underlying Chubby file system is used in many ways to coordinate and increase availability. One 
server is uses as the master for the system (4.3). The Chubby system stores the bootstrap pointer to the 
table’s B-Tree (4.3). It maintains a tablet directory with individual files for each tablet and particularly 
the unique master file (4.3, 5.7). This directory is used for tablet discovery, to determine the death of a 
server and to coordinate tablet splits/mergers (4.3). 
 
The master server contains no tablets and is not used to locating the tablet servers (4.4, 4.7, 5.2). It’s 
sole purpose is to assign tablets to the various tablet servers and balance the load between them (4.5). 
This also leads to related duties such as adding/removing tablet servers, maintaining a list of unassigned 
tablets, garbage collection, creation of new tables and merging of tablets (4.5, 5.8). Only one server has 
a “live” copy of a tablet at a time (5.4). The live tablet status is determined by ownership of a Chubby file 
lock corresponding to the tablet (5.5). 
 
The master server periodically attempts to acquire the existing locks (5.7). If the master identifies an 
unused lock the tablet is seen as unassigned and the master will reassign it to another tablet (5.5, 5.6). 
The original file is destroyed to prevent the former tablet server from reacquiring it (5.6). If the master 
itself fails a new master is assigned and it will start by checking the locks again (5.7). The polled locks are 
used to identify live servers, which are then polled to determine the set of live tablets (5.7). If the root 
tablet is not identified in this step it is immediately listed as unassigned and assigned to another server 



(5.8). Finally a search through the metadata tablets will indicate the complimentary set of unassigned 
tablets (5.7). 
 
There are many tablet servers, each keeping 10 to 1000 tablets (4.4, 4.6). The server handles all 
read/write requests on its own tablets (4.6, 4.7). When any one tablet gets too large the server will split 
the tablet (4.6, 5.8). Upon a split, the tablet server creates a new file in the Chubby system and notifies 
the master (5.8). Even if the message is lost or if the master server fails, the new file itself will prompt 
the same division (6.1). 
 
Read, Write and the Google File System 
Changes to the data are initially committed to the a log on the GFS (6.2). The original data is maintained 
in SSTables also on the GFS (6.2). The live tablet server will maintain a “memtable” in RAM which 
contains a record of all the logged commitments (6.2). The union of the memtable and SSTables is the 
true state of memory (6.2). Write operations result in updates in both the commit log and memtable, 
including deletions (6.3, 6.7). Read operations read simultaneously and sequentially from memtable and 
SSTable with an automatic merge as they are both sorted (6.2, 6.4). If the tablet must be recovered the 
memtable and SSTables are read and merged (6.2). Deletions in any subset will result in suppressing 
other data from the whole (6.7). 
 
Periodically the whole set of data is collected. This comes in three flavors. Minor compactions merge the 
memtable and SSTable into a new SSTable (6.5). This is prompted with the memtable is too large and 
the result is free server RAM in trade for more GFS space (6.5). Eventually this behavior will overwhelm 
the system (6.6). An unnamed middle compaction merges memtable and more than one SSTable to free 
up GFS space (6.6). Major compactions merge the whole set into one SSTable (6.7). The resulting 
SSTable contains no deletions as they have been used to suppress prior data (6.7). Major compactions 
have additional benefits of permanently removing old data, reducing the total amount of memory and 
permanently finalizing the data into GFS (6.7). 


