

Large-scale Incremental
Processing Using Distributed

Transactions and Notifications

Daniel Peng and Frank Dabek

Presented by Nick Radcliffe

What is Percolator?

● Percolator is a system for incrementally
processing updates to a large data set.

● Percolator has been used to produce
Google's websearch index since April,
2010.

What is Percolator?

● Percolator updates the index
incrementally as new documents are
crawled.

● “Incremental” is a big deal because it
avoids redoing work that has already been
done.

Benefits of MapReduce

● It's easy to maintain data invariants when
MapReduce is used to update the search
index.

● A series of MapReduces must be run to
process the document repository, but
these MapReduce phases are serialized.

Benefits of MapReduce

● For example, the indexing system must
perform link inversion, as well as
determine the PageRank of each page.

● However, inverted links are only written to
the highest-PageRank URL.

● When the indexing system writes inverted
links to the current highest-PageRank
URL, the PageRank cannot change
because the MapReduce phase that
computes it has already finished.

Why not MapReduce?

● Say you update the search index after
recrawling some small portion of the web.

● If MapReduce is used to update the index,
then it must process the entire repository,
not just the new documents.

● A series of 100 MapReduces must be
used to process the repository.

Why not simply Bigtable?

● Updating the search index can be done
much more efficiently if random accesses
of the repository are possible.

● If the computation does not have strong
consistency requirements, then a
distributed storage system such as
Bigtable is sufficient.

Why not simply Bigtable?

● Bigtable can scale to the size of the
Google repository, but...

● Bigtable does not give programmers tools
to maintain data invariants in the face of
concurrent updates to the index.

● In particular, Bigtable does not provide
multirow transactions, which are needed
for incrementally updating Google's index.

Summary of why Percolator is
so great

● Random accesses to the document
repository while maintaining data
invariants, which allows...

● Incremental updating of the search index,
so...

● No global scans of the entire repository,
therefore...

● Average age of documents in Google
search results decreased by 50%.

Tradeoffs

● Percolator trades efficient use of
resources for scalability.

● Caffeine (the Percolator-based indexing
system) uses twice as many resources as
the previous system to process the same
crawl rate.

● Roughly 30 times more CPU per
transactions than a standard DBMS.

Bigtable distributed storage
system

● Bigtable presents a multi-dimensional
sorted map to users.

● Keys are (row, column, time stamp).
● Bigtable handles petabytes of data and

runs reliably on large numbers of (possibly
unreliable) machines.

Bigtable distributed storage
system

● Bigtable provides lookup and update
operations on each row, and

● Bigtable row transactions enable atomic
read-modify-write operations on individual
rows (but not multiple rows).

Bigtable distributed storage
system

● A running Bigtable consists of a collection
of tablet servers, each of which is
responsible for serving several tablets

● (tablet = contiguous region of key space).
● The operation of the tablet servers is

coordinated by a master, i.e., the master
might direct a server to load/unload a
tablet.

Bigtable distributed storage
system

● A tablet is stored as a collection of read-
only files in the Google SSTable (Sorted
String Table) format.

● The SSTables are stored in GFS, and
Bigtable relies on GFS to preserve data in
the event of disk loss.

Bigtable demonstration

Overview of Percolator design

● Percolator is built on top of Bigtable.
● A percolator system consists of three

binaries that run on every machine in the
cluster: a Percolator worker, a Bigtable
tablet server, and a GFS chunkserver.

Overview of Percolator design

● Data is organized into Bigtable rows and
columns, with Percolator metadata stored
alongside in special columns.

● The Percolator library largely consists of
Bigtable operations wrapped in Percolator-
specific computation.

● Percolator adds multirow transactions
and observers to Bigtable.

Overview of Percolator design

● An observer is like an event-handler that is
invoked whenever a user-specified
column changes.

● Percolator applications are structured as a
series of observers.

● Each observer completes a task and
creates more work for “downstream”
observers by writing to the table.

Percolator transactions

● Percolator provides cross-row, cross-table
transactions with ACID snap-shot isolation
semantics.

● It is possible to incrementally process data
without the benefit of strong transactions.

● Transactions make it more tractable for
the user to reason about the state of the
system.

Percolator transactions

● A Get() operation first checks for a lock in
the timestamp range [0, start timestamp],
which is the range of timestamps visible in
the transaction’s snapshot.

● If no conflicting lock is found, Get() reads
the latest write record in that timestamp
range and returns the data item
corresponding to that write record.

Percolator transactions

● If a client fails while a transaction is being
committed, locks will be left behind.

● Deadlock is possible if the locks are not
cleaned up.

● When a transaction A encounters a
conflicting lock left behind by transaction
B, A may determine that B has failed and
erase its locks.

Percolator transactions: code
snippet

Timestamps

● The timestamp oracle is a server that
hands out timestamps in strictly increasing
order.

● The transaction protocol uses strictly
increasing timestamps to guarantee that
Get() returns all committed writes before
the transaction’s start timestamp.

Timestamps

● Since every transaction requires
contacting the timestamp oracle twice, this
service must scale well.

● Timestamp requests are batched to
decrease RPC's and hence increase the
scalability of the oracle.

Notifications

● The user writes code (“observers”) to be
triggered by changes to the table.

● Each observer registers a function and a
set of columns with Percolator.

● Percolator invokes the function after data
is written to one of those columns in any
row.

Notifications

● Percolator applications are structured as a
series of observers.

● Each observer completes a task and
creates more work for “downstream”
observers by writing to the table.

Notifications

● In Google's indexing system, a
MapReduce loads crawled documents into
Percolator by running loader transactions.

● These transactions trigger the document
processor transaction to index the
document (parse, extract links, etc.).

Notifications

● The document processor transaction
triggers further transactions, like
clustering.

● The clustering transaction triggers
transactions to export changed document
clusters to the serving system.

Caffeine

● The Percolator-based indexing system
(called Caffeine) crawls the same number
of documents as the old system.

● The main design goal of Caffeine is a
reduction in latency.

Caffeine

● The median document moves through
Caffeine over 100x faster than the
previous system.

● This latency improvement grows as the
system becomes more complex.

● Adding a new clustering phase to Caffeine
requires an extra lookup for each
document rather an extra scan over the
repository.

Caffeine

● For Caffeine, more resources are required
to make sure the system keeps up with
the input.

● For the old system, no amount of
resources can overcome delays
introduced by stragglers in an additional
pass over the repository.

Document clustering delay

● The authors used a synthetic benchmark
that clusters newly crawled documents
against a billion document repository to
remove duplicates.

● This is similar to the way that Google’s
indexing pipeline operates.

Document clustering delay

● In the Percolator clustering
implementation, each crawled document is
immediately written to the repository to be
clustered by an observer.

● The observer maintains an index table for
each clustering key and compares the
document against each index to determine
if it is a duplicate.

Document clustering delay

● MapReduce implements clustering of
continually arriving documents by
repeatedly running a sequence of
clustering MapReduces.

● The sequence of MapReduces processes
the entire repository and any crawled
documents that accumulated during
previous MapReduce phases.

Document clustering delay

Microbenchmarks: Percolator
vs Bigtable

● Comparison of Percolator to a “raw”
Bigtable.

● Only interested in the relative performance
of Bigtable and Percolator.

Percolator and TPC-E

● TPC-E simulates a brokerage firm with
customers who perform trades, market
search, and account inquiries.

● The authors' implementation is a
combined customer/market emulator that
calls into the Percolator library to perform
operations against Bigtable.

Percolator and TPC-E

● TPC-E was used to evaluate Percolator on
a more realistic workload.

● A number of Percolator’s tradeoffs conflict
with desirable properties of DBMS's that
TPC-E was designed for.

Percolator and TPC-E

Percolator and TPC-E

● The authors estimate that Percolator uses
roughly 30 times more CPU per
transaction than the benchmark system.

● However, Percolator is scalable and it's
performance on the benchmark (using
15,000 cores) is three times the current
record (which used 64 cores).

● 15,000 > 64.

Percolator, TPC-E, and
Failures

● To test fault tolerance, the benchmark was
run with 15 tablet servers and
performance was allowed to stabilize.

● The next plot shows the performance of
the system over time.

● The dip in performance at 17:09
corresponds to a third of the tablet servers
being (temporarily) killed.

Percolator, TPC-E, and
Failures

Questions

● Is the reduction in the average age of
documents in Google search results worth
the extra resources required by
Percolator/Caffeine?

● Can the scalability of Percolator be
obtained without the substantial
performance overheads?

● (From the authors) How much of an
efficiency loss is too much to pay for the
ability to add capacity endlessly simply by
purchasing more machines?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

