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What is Percolator?

● Percolator is a system for incrementally 
processing updates to a large data set.

● Percolator has been used to produce 
Google's websearch index since April, 
2010.



  

What is Percolator?

● Percolator updates the index 
incrementally as new documents are 
crawled.

● “Incremental” is a big deal because it 
avoids redoing work that has already been 
done.



  

Benefits of MapReduce

● It's easy to maintain data invariants when 
MapReduce is used to update the search 
index.

● A series of MapReduces must be run to 
process the document repository, but 
these MapReduce phases are serialized.



  

Benefits of MapReduce

● For example, the indexing system must 
perform link inversion, as well as 
determine the PageRank of each page.

● However, inverted links are only written to 
the highest-PageRank URL. 

● When the indexing system writes inverted 
links to the current highest-PageRank 
URL, the PageRank cannot change 
because the MapReduce phase that 
computes it has already finished.  



  

Why not MapReduce?

● Say you update the search index after 
recrawling some small portion of the web.

● If MapReduce is used to update the index, 
then it must process the entire repository, 
not just the new documents.

● A series of 100 MapReduces must be 
used to process the repository.  



  

Why not simply Bigtable?

● Updating the search index can be done 
much more efficiently if random accesses 
of the repository are possible.

● If the computation does not have strong 
consistency requirements, then a 
distributed storage system such as 
Bigtable is sufficient. 



  

Why not simply Bigtable?

● Bigtable can scale to the size of the 
Google repository, but...

● Bigtable does not give programmers tools 
to maintain data invariants in the face of 
concurrent updates to the index.

● In particular, Bigtable does not provide 
multirow transactions, which are needed 
for incrementally updating Google's index.



  

Summary of why Percolator is 
so great

● Random accesses to the document 
repository while maintaining data 
invariants, which allows...

● Incremental updating of the search index, 
so... 

● No global scans of the entire repository, 
therefore...

● Average age of documents in Google 
search results decreased by 50%.  



  

Tradeoffs

● Percolator trades efficient use of 
resources for scalability.

● Caffeine (the Percolator-based indexing 
system) uses twice as many resources as 
the previous system to process the same 
crawl rate.

● Roughly 30 times more CPU per 
transactions than a standard DBMS.



  

Bigtable distributed storage 
system

● Bigtable presents a multi-dimensional 
sorted map to users.

● Keys are (row, column, time stamp).
● Bigtable handles petabytes of data and 

runs reliably on large numbers of (possibly 
unreliable) machines.



  

Bigtable distributed storage 
system

● Bigtable provides lookup and update 
operations on each row, and 

● Bigtable row transactions enable atomic 
read-modify-write operations on individual 
rows (but not multiple rows). 



  

Bigtable distributed storage 
system

● A running Bigtable consists of a collection 
of tablet servers, each of which is 
responsible for serving several tablets 

● (tablet = contiguous region of key space).
● The operation of the tablet servers is 

coordinated by a master, i.e., the master 
might direct a server to load/unload a 
tablet.



  

Bigtable distributed storage 
system

● A tablet is stored as a collection of read-
only files in the Google SSTable (Sorted 
String Table) format.

● The SSTables are stored in GFS, and 
Bigtable relies on GFS to preserve data in 
the event of disk loss.



  

Bigtable demonstration



  

Overview of Percolator design

● Percolator is built on top of Bigtable.
● A percolator system consists of three 

binaries that run on every machine in the 
cluster: a Percolator worker, a Bigtable 
tablet server, and a GFS chunkserver.



  

Overview of Percolator design

● Data is organized into Bigtable rows and 
columns, with Percolator metadata stored 
alongside in special columns.

● The Percolator library largely consists of 
Bigtable operations wrapped in Percolator-
specific computation.

● Percolator adds multirow transactions 
and observers to Bigtable.



  

Overview of Percolator design

● An observer is like an event-handler that is 
invoked whenever a user-specified 
column changes.

● Percolator applications are structured as a 
series of observers. 

● Each observer completes a task and 
creates more work for “downstream” 
observers by writing to the table.



  

Percolator transactions

● Percolator provides cross-row, cross-table 
transactions with ACID snap-shot isolation 
semantics.

● It is possible to incrementally process data 
without the benefit of strong transactions.

● Transactions make it more tractable for 
the user to reason about the state of the 
system.



  

Percolator transactions

● A Get() operation first checks for a lock in 
the timestamp range [0, start timestamp], 
which is the range of timestamps visible in 
the transaction’s snapshot.

● If no conflicting lock is found, Get() reads 
the latest write record in that timestamp 
range and returns the data item 
corresponding to that write record.



  

Percolator transactions

● If a client fails while a transaction is being 
committed, locks will be left behind. 

● Deadlock is possible if the locks are not 
cleaned up. 

● When a transaction A encounters a 
conflicting lock left behind by transaction 
B, A may determine that B has failed and 
erase its locks.



  

Percolator transactions: code 
snippet



  

Timestamps

● The timestamp oracle is a server that 
hands out timestamps in strictly increasing 
order. 

● The transaction protocol uses strictly 
increasing timestamps to guarantee that 
Get() returns all committed writes before 
the transaction’s start timestamp.



  

Timestamps

● Since every transaction requires 
contacting the timestamp oracle twice, this 
service must scale well.

● Timestamp requests are batched to 
decrease RPC's and hence increase the 
scalability of the oracle.



  

Notifications

● The user writes code (“observers”) to be 
triggered by changes to the table. 

● Each observer registers a function and a 
set of columns with Percolator.

● Percolator invokes the function after data 
is written to one of those columns in any 
row.



  

Notifications

● Percolator applications are structured as a 
series of observers. 

● Each observer completes a task and 
creates more work for “downstream” 
observers by writing to the table.



  

Notifications

● In Google's indexing system, a 
MapReduce loads crawled documents into 
Percolator by running loader transactions.

● These transactions trigger the document 
processor transaction to index the 
document (parse, extract links, etc.). 



  

Notifications

● The document processor transaction 
triggers further transactions, like 
clustering. 

● The clustering transaction triggers 
transactions to export changed document 
clusters to the serving system.



  

Caffeine

● The Percolator-based indexing system 
(called Caffeine) crawls the same number 
of documents as the old system.

● The main design goal of Caffeine is a 
reduction in latency.



  

Caffeine

● The median document moves through 
Caffeine over 100x faster than the 
previous system.

● This latency improvement grows as the 
system becomes more complex. 

● Adding a new clustering phase to Caffeine 
requires an extra lookup for each 
document rather an extra scan over the 
repository. 



  

Caffeine

● For Caffeine, more resources are required 
to make sure the system keeps up with 
the input.

● For the old system, no amount of 
resources can overcome delays 
introduced by stragglers in an additional 
pass over the repository.



  

Document clustering delay

● The authors used a synthetic benchmark 
that clusters newly crawled documents 
against a billion document repository to 
remove duplicates.

● This is similar to the way that Google’s 
indexing pipeline operates.



  

Document clustering delay

● In the Percolator clustering 
implementation, each crawled document is 
immediately written to the repository to be 
clustered by an observer. 

● The observer maintains an index table for 
each clustering key and compares the 
document against each index to determine 
if it is a duplicate.



  

Document clustering delay

● MapReduce implements clustering of 
continually arriving documents by 
repeatedly running a sequence of 
clustering MapReduces.

● The sequence of MapReduces processes 
the entire repository and any crawled 
documents that accumulated during 
previous MapReduce phases.



  

Document clustering delay



  

Microbenchmarks: Percolator 
vs Bigtable

● Comparison of  Percolator to a “raw” 
Bigtable.

● Only interested in the relative performance 
of Bigtable and Percolator.



  

Percolator and TPC-E

● TPC-E simulates a brokerage firm with 
customers who perform trades, market 
search, and account inquiries.

● The authors' implementation is a 
combined customer/market emulator that 
calls into the Percolator library to perform 
operations against Bigtable.  



  

Percolator and TPC-E

● TPC-E was used to evaluate Percolator on 
a more realistic workload. 

● A number of Percolator’s tradeoffs conflict 
with desirable properties of DBMS's that 
TPC-E was designed for.



  

Percolator and TPC-E



  

Percolator and TPC-E

● The authors estimate that Percolator uses 
roughly 30 times more CPU per 
transaction than the benchmark system.

● However, Percolator is scalable and it's 
performance on the benchmark (using 
15,000 cores) is three times the current 
record (which used 64 cores).

● 15,000 > 64.



  

Percolator, TPC-E, and 
Failures

● To test fault tolerance, the benchmark was 
run with 15 tablet servers and 
performance was allowed to stabilize. 

● The next plot shows the performance of 
the system over time. 

● The dip in performance at 17:09 
corresponds to a third of the tablet servers 
being (temporarily) killed.



  

Percolator, TPC-E, and 
Failures



  

Questions

● Is the reduction in the average age of 
documents in Google search results worth 
the extra resources required by 
Percolator/Caffeine?

● Can the scalability of Percolator be 
obtained without the substantial 
performance overheads?

● (From the authors) How much of an 
efficiency loss is too much to pay for the 
ability to add capacity endlessly simply by 
purchasing more machines?
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