
Transactional Memory

Part 2: Software-Based Approaches

Dennis Kafura – CS5204 – Operating Systems 1



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Word-based STM (Shavit&Touitou)

 Guarantees lock-freedom
 Uses a non-recursive 

“helping” strategy
 Limitations

 Static transactions: 
ownership must be 
acquired in some total 
order to avoid livelock

 Memory costs
 Helping requires 

transaction to yield same 
results under multiple 
(partial) executions

Basic transaction process:
1. Read old values into transaction record

2. Acquire ownership of memory location for 
each value

a. Succeed: Perform transaction; update 
memory; release ownership. 

b. Fail: release ownership; help if not 
already helping (non-recursive); 
abort.

2



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Word-based STM (WSTM): Harris&Fraser

 Multiple addresses map to the same ownership record.
 Logical state: a (value, version) pair representing the contents of a memory location.
 Ownership record stores either version number of address or transaction descriptor.
 Read/write operations create entries in a transaction descriptor.
 Commit operation attempts to gain ownership of the locations it reads/writes by placing 

the address of its transaction descriptor in the ownership records.
 Guarantees obstruction-free execution.

3



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Stealing

 Transaction attempting to commit, “steals” transaction entry from conflicting transaction
 Provides non-blocking commit operation (guarantee of obstruction-free execution)
 Requires ownership record to store the number of transaction holding a transaction 

record for a location mapping to the ownership record

4



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Language Support

Conditional Critical Region (CCR)

Translation:

boolean done = false;
while (!done) {

STMStart();
try {

if (condition) {
statements;
done = STMCommit();

} else {
STMWait();

} catch (Throwable t) {
done = STMCommit();
if (done) {

throw t;
}

}
}

Syntax:

atomic (condition) {
statements;

}

 conditional critical region syntax 
added to Java

 source-to-bytecode compiler 
handles translation of atomic 
blocks and creates separate 
method of each atomic block

 methods of data access provide 
STMRead and STMWrite for 
methods defined for atomic 
blocks

5



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Performance

 WSTM is superior to simple synchronization schemes (CCR vs. S-1) on few processors
 WSTM is competitive with sophisticated synchronization schemes (CCR vs. FG-1) on 

few processors
 WSTM is superior to other synchronization schemes on large number of processors

6



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Dynamic STM (DTSM): Herlihy et.al.

 TMObject is a handle for an object.
 An “open” operation on the TMObject is required before object can be accessed.
 Transaction state may be: ACTIVE, COMMITTED, ABORTED.
 The “current” form of the object data is maintained (Old Object).
 A shadow copy of to-be-committed updates to the object is also maintained.

TM Object

Transaction

New Object

Old Object

Locator
Transaction

object data

object data

7



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Opening a TMObject for Writing

Transaction

New Object

Old Object

Locator
T2: Active

object data

TM Object

Transaction

New Object

Old Object

Locator
T1: Committed

object data

object data

Copy

CAS

8



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Opening a TMObject for Writing

Transaction

New Object

Old Object

Locator
T2: Active

object data

TM Object

Transaction

New Object

Old Object

Locator
T1: Aborted

object data

object data

Copy

CAS

9



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Opening a TMObject for Writing

 one of T1 or T2 must abort to resolve conflict without blocking
 each thread has a ContentionManager 

 aggressive – always/immediately aborts conflicting transaction
 polite – adaptive back-off

 contention reduced by “early release”
 reference to object dropped before transaction commits
 releasing transaction must insure that subsequent changes to the 

released object does not jeopardize consistency

TM Object

Transaction

New Object

Old Object

Locator
T1: Active

object data

object dataT2: Active

open for writing

10



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Opening a TMObject for Reading

TM Object

Transaction

New Object

Old Object

Locator
T1: Committed

object data

object data

T2: Active

read-only list

object

value

next

Transaction

11



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Performance

 STM versions competitive with simple locking scheme
 Aggressive contention management can cause performance to collapse under 

high contention

12



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Performance

 By lowering contention, early release sustains performance of aggressive contention 
management.

 Contention management useful and has possibly complex relationship to data 
structure design.

13



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

FSTM: Fraser 

 Objects are accessed by an open operation on the object header
 An object may be open in multiple transactions at the same time
 Transaction maintains an object handle for each open object
 Object handles are organized into two lists: a read-only list and a read-write list
 For each writeable object the transaction maintains a shadow copy of the object

private to the transaction
 Conflicts among transactions are detected and resolved at commit-time
 Guarantees lock-freedom

14



Transactional Memory

Dennis Kafura – CS5204 – Operating 
Systems

Commit operation in FTSM

Phase Description

Acquire
Action: Acquire each object in the read-write list in global 

total order using atomic CAS for each object
Outcomes:
 Abort if conflict with committed transaction detected
 Help if conflict with uncommitted transaction detected

Read-checking

Action: Verify consistency of each object in the read-only list 
Outcomes:
 Abort if change is detected in object held by Undecided 

transaction
 If conflict detected with Read-checking transaction:

 Help if other transaction precedes current transaction
 Abort if current transaction precedes other transaction

Release Release each acquired object



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Comparison Criteria*

 Strong or Weak Isolation
 Weak isolation: conflicting operation outside of a transaction may not 

follow the STM protocols
 Strong isolation: all conflicting operations are (converted to) execute in 

transactions
 Transaction Granularity

 Word: conflicts detected at word level
 Block: conflicts detected at block level

 Direct of Deferred Update
 Direct: memory is updated by transaction and restored to original value on 

abort
 Deferred: updates are stored privately and applied to memory on commit

 Update in place: private values copied to memory 
 Cloned replacement: private copy replaces original memory

 Concurrency control
 Pessimistic: conflict is immediately detected and resolved 
 Optimistic: conflict detection and/or resolution deferred

 Synchronization
 Blocking
 Non-blocking (wait-, lock-, obstruction-freedom)

* From: Transactional Memory, James Larus and Ravi Rajwar

16



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Comparison Criteria* (cont.)

 Conflict Detection
 Early: conflicts detected on open/acquire or by explicit validation
 Late: conflicts detected at time of commit operation

 Inconsistent reads
 Validation: check for updates to memory being read
 Invalidation: abort reading transaction when update is made
 Toleration: allow inconsistency (expecting subsequent validation/abort)

 Conflict resolution
 System-defined: help or abort conflicting transactions
 Application-defined: contention manager resolves conflicts

 Nested Transactions
 Flattened: aborting inner transaction aborts outer transaction - inner transaction only 

commits when outer transaction commits
 Not-Flattened: aborting inner transaction does not cause outer transaction to abort

 Closed: effects of inner transaction not visible to other transaction until outer transaction 
commits (rollback possible)

 Open: effects of inner transaction visible to other transaction when inner transaction commits 
(rollback not possible)

 Exceptions
 Terminate: a commit operation is attempted when an exception occurs in the 

transaction before propagating the exception
 Abort: the transaction is aborted

* From: Transactional Memory, James Larus and Ravi Rajwar

17



Transactional Memory

Dennis Kafura – CS5204 – Operating 
Systems

Comparison

Characteristic
System

STM-1 WSTM DSTM FSTM

Strong/Weak Isolation N/A Weak Weak Weak

Granularity Word Word Object Object

Direct/Deferred Update Direct Deferred 
(update in place)

Deferred 
(clone replacement)

Deferred 
(clone replacement)

Concurrency Control Pessimistic Optimistic Optimistic Optimistic

Synchronization Lock-free Obstruction-free Obstruction-free Lock-free

Conflict Detection Early Late Early Late

Inconsistent Reads None Toleration Validation Validation

Conflict Resolution Helping Helping/aborting Contention 
manager

Abort

Nested Transactions Flattened Flattened Closed

Exceptions Terminate


	Transactional Memory
	Word-based STM (Shavit&Touitou)
	Word-based STM (WSTM): Harris&Fraser
	Stealing
	Language Support
	Performance
	Dynamic STM (DTSM): Herlihy et.al.
	Opening a TMObject for Writing
	Opening a TMObject for Writing
	Opening a TMObject for Writing
	Opening a TMObject for Reading
	Performance
	Performance
	FSTM: Fraser 
	Commit operation in FTSM
	Comparison Criteria*
	Comparison Criteria* (cont.)
	Comparison

