Transactional Memory

Part 2. Software-Based Approaches

Dennis Kafura — CS5204 — Operating Systems 1

|

Transactional Memory

Word-based STM (Shavit&Touitou)

Memory

Ownerships \

m Guarantees lock-freedom

m Uses a non-recursive
“helping” strategy

m Limitations

O Static transactions:
ownership must be
acquired in some total
order to avoid livelock

O Memory costs
O Helping requires
transaction to yield same

results under multiple
(partial) executions

status status
version

status
version
description
size

version
description
size

description
size

OldValues OldValues OldValues

Rec Rec

5 1

Rec

1

Basic transaction process:

1.

Read old values into transaction record

Acquire ownership of memory location for
each value

a. Succeed: Perform transaction; update
memory; release ownership.

b. Fail: release ownership;, help if not
already helping (non-recursive);
abort.

Virginia

Dennis Kafura — CS5204 — Operating Systems

Word-based STM (WSTM): Harris&Fraser

Application Ownership Transaction

heap records descriptors
| |
| |

at /

rl
a’ 100 \ t1
2 Status: ACTIVE
a3 200 / az: (100,7) -> (300.8)

at: (7,15)-> (7,15

version 15

2

ad | 500 = Status: ASLEEP
/ a4: (500,12) - (500,12)
a5 | 600 r a5: (600,13) - (600,13)

Multiple addresses map to the same ownership record.

Logical state: a (value, version) pair representing the contents of a memory location.
Ownership record stores either version number of address or transaction descriptor.
Read/write operations create entries in a transaction descriptor.

Commit operation attempts to gain ownership of the locations it reads/writes by placing
the address of its transaction descriptor in the ownership records.

m Guarantees obstruction-free execution.

V%Tech Dennis Kafura — CS5204 — Operating Systems 3

Stealing
Application Ownership Transaction
heap records descriptors
| |
t3
ab 100 ‘
Status: ACTIVE
) 2 7| a6: (100.7) -> (200,8)
a’l 200 / a’: (200,7) -> (100,8)
a8 4 as: (5,7) -> (5,8)
| r6 0 | version 15
/ “
ay / Status: COMMITTED
ad: (4,6) -> (5,7)
|

m Transaction attempting to commit, “steals” transaction entry from conflicting transaction
m Provides non-blocking commit operation (guarantee of obstruction-free execution)

m Requires ownership record to store the number of transaction holding a transaction
record for a location mapping to the ownership record

V%Tech Dennis Kafura — CS5204 — Operating Systems 4

| A
Language Support
Conditional Critical Region (CCR)

Syntax:

atomic (condition) {

}

statements;

conditional critical region syntax
added to Java

source-to-bytecode compiler
handles translation of atomic
blocks and creates separate

method of each atomic block

methods of data access provide
STMRead and STMWrite for
methods defined for atomic
blocks

Transactional Memory

Translation:
boolean done = false;
while (!done) {
STMStart();
try {
if (condition) {
statements;
done = STMCommit();
} else {
STMWait();

} catch (Throwable t) {
done = STMCommit();
if (done) {

throw t;
}
}
}

=T

Dennis Kafura — CS5204 —

Operating Systems

A

Performance

(s per operation

50 -

1% updates 16% updates el
CPUs || CCR | S-1 | FG-1 || CCR | S-1 | FG-1
1 1.8 1.1 0.9 1.9 1.1 0.9 40 Single lock
2 1.8 3.3 0.9 2.0 7.9 1.0 -
3 2.1 25 1.3 2.4 23 1.1 %
4 1.8 30 1.1 2.4 30 1.4 ‘% *
? 25
size=256 size=4096 v
CPUs || CCR | S-1 | FG-1 || CCR | S-1 | FG-1 >
1 4.8 2.1 2.6 5.1 2.3 2.7 © 15
2 6.2 17 5.0 6.3 17 4.4 10
3 7.2 27 6.4 7.2 28 6.3 ol
4 74 | 37| 83 || 75 | 40| 6.9 5 S

Transactional Memory

" Fine-grained lacking

m WSTM is superior to simple synchronization schemes (CCR vs. S-1) on few processors

m WSTM is competitive with sophisticated synchronization schemes (CCR vs. FG-1) on
few processors

m WSTM is superior to other synchronization schemes on large number of processors

=T

Dennis Kafura — CS5204 — Operating Systems

|

Dynamic STM (DTSM): Herlihy et.al.

TM Object

—

I, o

Locator

Transaction A

Transaction

New Object

Old Object

object data

~J

object data

TMODbiject is a handle for an object.
An “open” operation on the TMODbject is required before object can be accessed.
Transaction state may be: ACTIVE, COMMITTED, ABORTED.

The “current” form of the object data is maintained (Old Object).

A shadow copy of to-be-committed updates to the object is also maintained.

Transactional Memory

=T

Dennis Kafura — CS5204 — Operating Systems

Virginia

TM Object

Transactional Memory

Opening a TMODbject for Writing

Locator

New Object

Locator

Transaction A

New Object

Old Object

] __—" T1:Committed
Transaction —

Old Object \\

object data

object data

T2: Active

object data

Dennis Kafura — CS5204 — Operating Systems

Opening a TMODbject for Writing

Locator

) T1: Aborted
Transaction —

New Object

Old Object object data

TM Object object data - -

Locator

T2: Active /

Transaction A

New Object

\ 1
\ /
\ /
\ ’
\
\ ,’
S /
S 7’
S ’
~ -,
\\ ”/
0
(@]
©
<

Old Object /| object data

vnginiaTech Dennis Kafura — CS5204 — Operating Systems

Opening a TMODbject for Writing

TM Object Locator
e Transaction A

T1: Active

7

PR New Object

open for writing Old Object \\A object data

T2: Active object data

m one of T1 or T2 must abort to resolve conflict without blocking

m each thread has a ContentionManager

O aggressive — always/immediately aborts conflicting transaction
O polite - adaptive back-off

m contention reduced by “early release”
O reference to object dropped before transaction commits

O releasing transaction must insure that subsequent changes to the
released object does not jeopardize consistency

Virgin Dennis Kafura — CS5204 — Operating Systems 10

" S

Opening a TMODbject for Reading

Transactional Memory

Transaction TM Object Locator
> [transaction | __—" T1: Committed
T2: Active] 7
. New Object
read-only list ——

Old Object object data
object object data
value -~

next
l
Virginia Dennis Kafura — CS5204 — Operating Systems 11

Performance

100

Qo
o
— e

(o)}
o
T

operations/millisecond

Simple Locking ———

IntSetSimple/Aggressive - .

IntSetSimple/Polite - .
IntSetRelease/Aggressive o

e IntSetRelease/Polite =~
e RBTree/Aggressive ---o-- |
e RBTree/Polite

10 20 30 40 50 60 70
Number of threads (72-processor machine)

m STM versions competitive with simple locking scheme

m Aggressive contention management can cause performance to collapse under

high contention

Transactional Memory

=T

Dennis Kafura — CS5204 — Operating Systems

12

operations/millisecond

Performance

Transactional Memory

50

| Simple L'ocking —
IntSetSimple/Aggressive -

IntSetSimple/Polite -

IntSetRelease/Aggressive o

IntSetRelease/Polite =
RBTree/Aggressive - ©

RBTree/Polite e

. oo o e e R S - b, y.
df_;ff B S S A,
100 200 300 400 500

Number of threads (72-processor machine)

m By lowering contention, early release sustains performance of aggressive contention
management.

m Contention management useful and has possibly complex relationship to data

structure design.

=T

Dennis Kafura — CS5204 — Operating Systems

13

Transactional Memory

FSTM: Fraser

= - 5 =

3 S T 3

= X & B

sranus UNDECIDED —— S .
- __,.-—-"af .
read—only list _— Object Handles
_,-—-"’-}
read—write list
Transaction Descriptor 1 Y
Y . '
Concurrent Shadow
—_ - .
Object Copy

Object Header

Objects are accessed by an open operation on the object header

An object may be open in multiple transactions at the same time

Transaction maintains an object handle for each open object

Object handles are organized into two lists: a read-only list and a read-write list

For each writeable object the transaction maintains a shadow copy of the object
private to the transaction

Conflicts among transactions are detected and resolved at commit-time
m Guarantees lock-freedom

vnginiaTech Dennis Kafura — CS5204 — Operating Systems 14

Commit operation in FTSM

Phase Description
Action: Acquire each object in the read-write list in global
Acquire total order using atomic CAS for each object

Outcomes:
M Abort if conflict with committed transaction detected
m Help if conflict with uncommitted transaction detected

Read-checking

Action: Verify consistency of each object in the read-only list
Outcomes:

m Abort if change is detected in object held by Undecided
transaction

m If conflict detected with Read-checking transaction:
O Help if other transaction precedes current transaction
O Abort if current transaction precedes other transaction

Release

Release each acquired object

=T

o .

Systems

Comparison Criteria*

m Strong or Weak Isolation

O Weak isolation: conflicting operation outside of a transaction may not
follow the STM protocols

O Strong isolation: all conflicting operations are (converted to) execute in
transactions
m Transaction Granularity
O Word: conflicts detected at word level
0 Block: conflicts detected at block level

m Direct of Deferred Update

O Direct: memory is updated by transaction and restored to original value on
abort

0O Deferred: updates are stored privately and applied to memory on commit
m Update in place: private values copied to memory
m Cloned replacement: private copy replaces original memory
m Concurrency control

O Pessimistic: conflict is immediately detected and resolved
O Optimistic: conflict detection and/or resolution deferred

m Synchronization
O Blocking
O Non-blocking (wait-, lock-, obstruction-freedom)

* From: Transactional Memory, James Larus and Ravi Rajwar

V%Tedl Dennis Kafura — CS5204 — Operating Systems 16

Comparison Criteria* (cont.)

m Conflict Detection

O Early: conflicts detected on open/acquire or by explicit validation
O Late: conflicts detected at time of commit operation

m Inconsistent reads
0 Validation: check for updates to memory being read
O Invalidation: abort reading transaction when update is made
O Toleration: allow inconsistency (expecting subsequent validation/abort)

m Conflict resolution

O System-defined: help or abort conflicting transactions
O Application-defined: contention manager resolves conflicts

m Nested Transactions

0O Flattened: aborting inner transaction aborts outer transaction - inner transaction only
commits when outer transaction commits

O Not-Flattened: aborting inner transaction does not cause outer transaction to abort

= Closed: effects of inner transaction not visible to other transaction until outer transaction
commits (rollback possible)

= Open: effects of inner transaction visible to other transaction when inner transaction commits
(rollback not possible)

m Exceptions

0O Terminate: a commit operation is attempted when an exception occurs in the
transaction before propagating the exception

O Abort: the transaction is aborted

* From: Transactional Memory, James Larus and Ravi Rajwar

V%Tedl Dennis Kafura — CS5204 — Operating Systems 17

A

Transactional Memory

Comparison
. System
Characteristic
STM-1 WSTM DSTM FSTM
Strong/Weak Isolation | N/A Weak Weak Weak
Granularity Word Word Object Object
Direct/Deferred Update | Direct Deferred Deferred Deferred
(update in place) (clone replacement) | (clone replacement)
Concurrency Control Pessimistic | Optimistic Optimistic Optimistic
Synchronization Lock-free | Obstruction-free | Obstruction-free | Lock-free
Conflict Detection Early Late Early Late
Inconsistent Reads None Toleration Validation Validation
Conflict Resolution Helping Helping/aborting | Contention Abort
manager
Nested Transactions Flattened Flattened Closed
Exceptions Terminate

=TT

	Transactional Memory
	Word-based STM (Shavit&Touitou)
	Word-based STM (WSTM): Harris&Fraser
	Stealing
	Language Support
	Performance
	Dynamic STM (DTSM): Herlihy et.al.
	Opening a TMObject for Writing
	Opening a TMObject for Writing
	Opening a TMObject for Writing
	Opening a TMObject for Reading
	Performance
	Performance
	FSTM: Fraser
	Commit operation in FTSM
	Comparison Criteria*
	Comparison Criteria* (cont.)
	Comparison

