
Transactional Memory

Part 2: Software-Based Approaches

Dennis Kafura – CS5204 – Operating Systems 1



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Word-based STM (Shavit&Touitou)

 Guarantees lock-freedom
 Uses a non-recursive 

“helping” strategy
 Limitations

 Static transactions: 
ownership must be 
acquired in some total 
order to avoid livelock

 Memory costs
 Helping requires 

transaction to yield same 
results under multiple 
(partial) executions

Basic transaction process:
1. Read old values into transaction record

2. Acquire ownership of memory location for 
each value

a. Succeed: Perform transaction; update 
memory; release ownership. 

b. Fail: release ownership; help if not 
already helping (non-recursive); 
abort.

2



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Word-based STM (WSTM): Harris&Fraser

 Multiple addresses map to the same ownership record.
 Logical state: a (value, version) pair representing the contents of a memory location.
 Ownership record stores either version number of address or transaction descriptor.
 Read/write operations create entries in a transaction descriptor.
 Commit operation attempts to gain ownership of the locations it reads/writes by placing 

the address of its transaction descriptor in the ownership records.
 Guarantees obstruction-free execution.

3



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Stealing

 Transaction attempting to commit, “steals” transaction entry from conflicting transaction
 Provides non-blocking commit operation (guarantee of obstruction-free execution)
 Requires ownership record to store the number of transaction holding a transaction 

record for a location mapping to the ownership record

4



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Language Support

Conditional Critical Region (CCR)

Translation:

boolean done = false;
while (!done) {

STMStart();
try {

if (condition) {
statements;
done = STMCommit();

} else {
STMWait();

} catch (Throwable t) {
done = STMCommit();
if (done) {

throw t;
}

}
}

Syntax:

atomic (condition) {
statements;

}

 conditional critical region syntax 
added to Java

 source-to-bytecode compiler 
handles translation of atomic 
blocks and creates separate 
method of each atomic block

 methods of data access provide 
STMRead and STMWrite for 
methods defined for atomic 
blocks

5



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Performance

 WSTM is superior to simple synchronization schemes (CCR vs. S-1) on few processors
 WSTM is competitive with sophisticated synchronization schemes (CCR vs. FG-1) on 

few processors
 WSTM is superior to other synchronization schemes on large number of processors

6



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Dynamic STM (DTSM): Herlihy et.al.

 TMObject is a handle for an object.
 An “open” operation on the TMObject is required before object can be accessed.
 Transaction state may be: ACTIVE, COMMITTED, ABORTED.
 The “current” form of the object data is maintained (Old Object).
 A shadow copy of to-be-committed updates to the object is also maintained.

TM Object

Transaction

New Object

Old Object

Locator
Transaction

object data

object data

7



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Opening a TMObject for Writing

Transaction

New Object

Old Object

Locator
T2: Active

object data

TM Object

Transaction

New Object

Old Object

Locator
T1: Committed

object data

object data

Copy

CAS

8



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Opening a TMObject for Writing

Transaction

New Object

Old Object

Locator
T2: Active

object data

TM Object

Transaction

New Object

Old Object

Locator
T1: Aborted

object data

object data

Copy

CAS

9



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Opening a TMObject for Writing

 one of T1 or T2 must abort to resolve conflict without blocking
 each thread has a ContentionManager 

 aggressive – always/immediately aborts conflicting transaction
 polite – adaptive back-off

 contention reduced by “early release”
 reference to object dropped before transaction commits
 releasing transaction must insure that subsequent changes to the 

released object does not jeopardize consistency

TM Object

Transaction

New Object

Old Object

Locator
T1: Active

object data

object dataT2: Active

open for writing

10



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Opening a TMObject for Reading

TM Object

Transaction

New Object

Old Object

Locator
T1: Committed

object data

object data

T2: Active

read-only list

object

value

next

Transaction

11



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Performance

 STM versions competitive with simple locking scheme
 Aggressive contention management can cause performance to collapse under 

high contention

12



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Performance

 By lowering contention, early release sustains performance of aggressive contention 
management.

 Contention management useful and has possibly complex relationship to data 
structure design.

13



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

FSTM: Fraser 

 Objects are accessed by an open operation on the object header
 An object may be open in multiple transactions at the same time
 Transaction maintains an object handle for each open object
 Object handles are organized into two lists: a read-only list and a read-write list
 For each writeable object the transaction maintains a shadow copy of the object

private to the transaction
 Conflicts among transactions are detected and resolved at commit-time
 Guarantees lock-freedom

14



Transactional Memory

Dennis Kafura – CS5204 – Operating 
Systems

Commit operation in FTSM

Phase Description

Acquire
Action: Acquire each object in the read-write list in global 

total order using atomic CAS for each object
Outcomes:
 Abort if conflict with committed transaction detected
 Help if conflict with uncommitted transaction detected

Read-checking

Action: Verify consistency of each object in the read-only list 
Outcomes:
 Abort if change is detected in object held by Undecided 

transaction
 If conflict detected with Read-checking transaction:

 Help if other transaction precedes current transaction
 Abort if current transaction precedes other transaction

Release Release each acquired object



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Comparison Criteria*

 Strong or Weak Isolation
 Weak isolation: conflicting operation outside of a transaction may not 

follow the STM protocols
 Strong isolation: all conflicting operations are (converted to) execute in 

transactions
 Transaction Granularity

 Word: conflicts detected at word level
 Block: conflicts detected at block level

 Direct of Deferred Update
 Direct: memory is updated by transaction and restored to original value on 

abort
 Deferred: updates are stored privately and applied to memory on commit

 Update in place: private values copied to memory 
 Cloned replacement: private copy replaces original memory

 Concurrency control
 Pessimistic: conflict is immediately detected and resolved 
 Optimistic: conflict detection and/or resolution deferred

 Synchronization
 Blocking
 Non-blocking (wait-, lock-, obstruction-freedom)

* From: Transactional Memory, James Larus and Ravi Rajwar

16



Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Comparison Criteria* (cont.)

 Conflict Detection
 Early: conflicts detected on open/acquire or by explicit validation
 Late: conflicts detected at time of commit operation

 Inconsistent reads
 Validation: check for updates to memory being read
 Invalidation: abort reading transaction when update is made
 Toleration: allow inconsistency (expecting subsequent validation/abort)

 Conflict resolution
 System-defined: help or abort conflicting transactions
 Application-defined: contention manager resolves conflicts

 Nested Transactions
 Flattened: aborting inner transaction aborts outer transaction - inner transaction only 

commits when outer transaction commits
 Not-Flattened: aborting inner transaction does not cause outer transaction to abort

 Closed: effects of inner transaction not visible to other transaction until outer transaction 
commits (rollback possible)

 Open: effects of inner transaction visible to other transaction when inner transaction commits 
(rollback not possible)

 Exceptions
 Terminate: a commit operation is attempted when an exception occurs in the 

transaction before propagating the exception
 Abort: the transaction is aborted

* From: Transactional Memory, James Larus and Ravi Rajwar

17



Transactional Memory

Dennis Kafura – CS5204 – Operating 
Systems

Comparison

Characteristic
System

STM-1 WSTM DSTM FSTM

Strong/Weak Isolation N/A Weak Weak Weak

Granularity Word Word Object Object

Direct/Deferred Update Direct Deferred 
(update in place)

Deferred 
(clone replacement)

Deferred 
(clone replacement)

Concurrency Control Pessimistic Optimistic Optimistic Optimistic

Synchronization Lock-free Obstruction-free Obstruction-free Lock-free

Conflict Detection Early Late Early Late

Inconsistent Reads None Toleration Validation Validation

Conflict Resolution Helping Helping/aborting Contention 
manager

Abort

Nested Transactions Flattened Flattened Closed

Exceptions Terminate


	Transactional Memory
	Word-based STM (Shavit&Touitou)
	Word-based STM (WSTM): Harris&Fraser
	Stealing
	Language Support
	Performance
	Dynamic STM (DTSM): Herlihy et.al.
	Opening a TMObject for Writing
	Opening a TMObject for Writing
	Opening a TMObject for Writing
	Opening a TMObject for Reading
	Performance
	Performance
	FSTM: Fraser 
	Commit operation in FTSM
	Comparison Criteria*
	Comparison Criteria* (cont.)
	Comparison

