
Transactional Memory

Part 1: Concepts and Hardware-
Based Approaches

1Dennis Kafura – CS5204 – Operating Systems

Transactional Memory

Introduction

 Provide support for concurrent activity using transaction-
style semantics without explicit locking

 Avoids problems with explicit locking
 Software engineering problems
 Priority inversion
 Convoying
 Deadlock

 Approaches
 Hardware (faster, size-limitations, platform dependent)
 Software (slower, unlimited size, platform independent)

 Word-based (fine-grain, complex data structures)
 Object-based (course-grain, higher-level structures)

2Dennis Kafura – CS5204 – Operating Systems

Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

History

D.B. Lomet, “Process structuring, synchronization, and recovery using atomic actions,”
In Proc. ACM Conf. on Language Design for Reliable Software, Raleigh, NC, 1977,
pp. 128–137.

Lomet* proposed the construct:

<identifier>: action(<parameter-list>);
<statement-list>
end;

where the statement-list is executed as an atomic action. The statement-list
can include:

await <test> then <statement-list>;

so that execution of the process/thread does not proceed until test is true.

*

3

Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Transaction Pattern

repeat {

BeginTransaction(); /* initialize transaction */
<read input values>
success = Validate(); /* test if inputs consistent */
if (success) {

<generate updates>
success = Commit(); /* attempt permanent update */
if (!success)

Abort(); /* terminate if unable to commit */
}
EndTransaction(); /* close transaction */

} until (success);

4

Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Guarantees

 Wait-freedom
 All processes make progress in a finite number of their individual

steps
 Avoid deadlocks and starvation
 Strongest guarantee but difficult to provide in practice

 Lock-freedom
 At least one process makes progress in a finite number of steps
 Avoids deadlock but not starvation

 Obstruction-freedom
 At least one process makes progress in a finite number of its

own steps in the absence of contention
 Avoids deadlock but not livelock
 Livelock controlled by:

 Exponential back-off
 Contention management

5

Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Hardware Instructions

Compare-and-Swap (CAS):

Usage: a spin-lock inuse = false;

…

while (CAS(&inuse, false, true);

Examples: CMPXCHNG instruction on the x86 and Itaninium architectures

word CAS (word* addr, word test, word new) {
atomic {

if (*addr == test) {
*addr = new;
return test;

}
else return *addr;

}
}

6

Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Hardware Instructions

ldl_l/stl_c and ldq_l/stq_c (Alpha), lwarx/stwcx (PowerPC),
ll/sc (MIPS), and ldrex/strex (ARM version 6 and above).

LL/SC: load-linked/store-conditional

Examples:

word LL(word* address) {
return *address;

}

boolean SC(word* address, word value){
atomic { if (address updated since LL)

return false;
else { address = value;

return true;
}

}
}

Usage: repeat { while (LL(inuse));
done = SC(inuse, 1);

} until (done);

7

Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Hardware-based Approach

 Replace short critical sections
 Instructions

 Memory
 Load-transactional (LT)
 Load-transactional-exclusive (LTX)
 Store-transactional (ST)

 Transaction state
 Commit
 Abort
 Validate

 Usage pattern
 Use LT or LTX to read from a set of locations
 Use Validate to ensure consistency of read values
 Use ST to update memory locations
 Use Commit to make changes permanent

 Definitions
 Read set: locations read by LT
 Write set: locations accessed by LTX or ST
 Data set: union of Read set and Write set

8

Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Example
typedef struct list_elem { struct list_elem *next; /* next to dequeue */

struct list_elem *prev; /* previously enqueued */

int value; } entry;

shared entry *Head, *Tail;

void list_enq(entry* new) {

entry *old_tail;

unsigned backoff = BACKOFF_MIN;

unsigned wait;

new->next = new->prev = NULL;

while (TRUE) {

old_tail = (entry*) LTX(&Tail);

if (VALIDATE()) {

ST(&new->prev, old_tail);

if (old_tail == NULL) {ST(&Head, new); }

else {ST(&old_tail->next, new); }

ST(&Tail, new);

if (COMMIT()) return;

}

wait = random() % (01 << backoff); /* exponential backoff */

while (wait--);

if (backoff < BACKOFF_MAX) backoff++;

}

}

9

Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Hardware-based Approach

10

Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Cache Implementation

 Processor caches and shared memory connected via shared bus.
 Caches and shared memory “snoop” on the bus and react (by updating their contents) based

on observed bus traffic.
 Each cache contains an (address, value) pair and a state; transactional memory adds a tag.
 Cache coherence: the (address, value) pairs must be consistent across the set of caches.
 Basic idea: “any protocol capable of detecting accessibility conflicts can also detect

transaction conflict at no extra cost.”

Shared Memory

Bus

address value state tag cache. . .

11

Transactional Memory

Dennis Kafura – CS5204 – Operating
Systems

Line States

Shared Memory

Bus

address value state tags cache. . .

Name Access Shared? Modified?
invalid none --- ---
valid R yes no
dirty R, W no yes
reserved R, W no no

Transactional Memory

Dennis Kafura – CS5204 – Operating
Systems

Transactional Tags

Shared Memory

Bus

address value state tags cache. . .

Name Meaning
EMPTY contains no data
NORMAL contains committed data
XCOMMIT discard on commit
XABORT discard on abort

Transactional Memory

Dennis Kafura – CS5204 – Operating
Systems

Bus cycles

Shared Memory

Bus

address value state tags cache. . .

Name Kind Meaning New access

READ regular read value shared

RFO regular read value exclusive

WRITE both write back exclusive

T_READ transaction read value shared

T_WRITE transaction read value exclusive

BUSY transaction refuse access unchanged

Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Scenarios

 LT instruction
 If XABORT entry in transactional cache: return value
 If NORMAL entry

 Change NORMAL to XABORT
 Allocate second entry with XCOMMIT (same data)
 Return value

 Otherwise
 Issue T_READ bus cycle

 Successful: set up XABORT/XCOMMIT entries
 BUSY: abort transaction

 LTX instruction
 Same as LT instruction except that T_RFO bus cycle is

used instead and cache line state is RESERVED
 ST instruction

 Same as LTX except that the XABORT value is updated

15

Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Performance Simulations

comparison methods
•TTS – test/test-and-set

(to implement a spin lock)

•LL/SC – load-linked/store-conditional
(to implement a spin lock)

•MCS – software queueing

•QOSB – hardware queueing

•Transactional Memory

QOSB

TTS

MCS

LL/SC

TM

16

	Transactional Memory
	Introduction
	History
	Transaction Pattern
	Guarantees
	Hardware Instructions
	Hardware Instructions
	Hardware-based Approach
	Example
	Hardware-based Approach
	Cache Implementation
	Line States
	Transactional Tags
	Bus cycles
	Scenarios
	Performance Simulations

