
Transactional Memory

Part 1: Concepts and Hardware-
Based Approaches

1Dennis Kafura – CS5204 – Operating Systems

Transactional Memory

Introduction

 Provide support for concurrent activity using transaction-
style semantics without explicit locking

 Avoids problems with explicit locking
 Software engineering problems
 Priority inversion
 Convoying
 Deadlock

 Approaches
 Hardware (faster, size-limitations, platform dependent)
 Software (slower, unlimited size, platform independent)

 Word-based (fine-grain, complex data structures)
 Object-based (course-grain, higher-level structures)

2Dennis Kafura – CS5204 – Operating Systems

Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

History

D.B. Lomet, “Process structuring, synchronization, and recovery using atomic actions,”
In Proc. ACM Conf. on Language Design for Reliable Software, Raleigh, NC, 1977,
pp. 128–137.

Lomet* proposed the construct:

<identifier>: action(<parameter-list>);
<statement-list>
end;

where the statement-list is executed as an atomic action. The statement-list
can include:

await <test> then <statement-list>;

so that execution of the process/thread does not proceed until test is true.

*

3

Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Transaction Pattern

repeat {

BeginTransaction(); /* initialize transaction */
<read input values>
success = Validate(); /* test if inputs consistent */
if (success) {

<generate updates>
success = Commit(); /* attempt permanent update */
if (!success)

Abort(); /* terminate if unable to commit */
}
EndTransaction(); /* close transaction */

} until (success);

4

Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Guarantees

 Wait-freedom
 All processes make progress in a finite number of their individual

steps
 Avoid deadlocks and starvation
 Strongest guarantee but difficult to provide in practice

 Lock-freedom
 At least one process makes progress in a finite number of steps
 Avoids deadlock but not starvation

 Obstruction-freedom
 At least one process makes progress in a finite number of its

own steps in the absence of contention
 Avoids deadlock but not livelock
 Livelock controlled by:

 Exponential back-off
 Contention management

5

Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Hardware Instructions

Compare-and-Swap (CAS):

Usage: a spin-lock inuse = false;

…

while (CAS(&inuse, false, true);

Examples: CMPXCHNG instruction on the x86 and Itaninium architectures

word CAS (word* addr, word test, word new) {
atomic {

if (*addr == test) {
*addr = new;
return test;

}
else return *addr;

}
}

6

Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Hardware Instructions

ldl_l/stl_c and ldq_l/stq_c (Alpha), lwarx/stwcx (PowerPC),
ll/sc (MIPS), and ldrex/strex (ARM version 6 and above).

LL/SC: load-linked/store-conditional

Examples:

word LL(word* address) {
return *address;

}

boolean SC(word* address, word value){
atomic { if (address updated since LL)

return false;
else { address = value;

return true;
}

}
}

Usage: repeat { while (LL(inuse));
done = SC(inuse, 1);

} until (done);

7

Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Hardware-based Approach

 Replace short critical sections
 Instructions

 Memory
 Load-transactional (LT)
 Load-transactional-exclusive (LTX)
 Store-transactional (ST)

 Transaction state
 Commit
 Abort
 Validate

 Usage pattern
 Use LT or LTX to read from a set of locations
 Use Validate to ensure consistency of read values
 Use ST to update memory locations
 Use Commit to make changes permanent

 Definitions
 Read set: locations read by LT
 Write set: locations accessed by LTX or ST
 Data set: union of Read set and Write set

8

Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Example
typedef struct list_elem { struct list_elem *next; /* next to dequeue */

struct list_elem *prev; /* previously enqueued */

int value; } entry;

shared entry *Head, *Tail;

void list_enq(entry* new) {

entry *old_tail;

unsigned backoff = BACKOFF_MIN;

unsigned wait;

new->next = new->prev = NULL;

while (TRUE) {

old_tail = (entry*) LTX(&Tail);

if (VALIDATE()) {

ST(&new->prev, old_tail);

if (old_tail == NULL) {ST(&Head, new); }

else {ST(&old_tail->next, new); }

ST(&Tail, new);

if (COMMIT()) return;

}

wait = random() % (01 << backoff); /* exponential backoff */

while (wait--);

if (backoff < BACKOFF_MAX) backoff++;

}

}

9

Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Hardware-based Approach

10

Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Cache Implementation

 Processor caches and shared memory connected via shared bus.
 Caches and shared memory “snoop” on the bus and react (by updating their contents) based

on observed bus traffic.
 Each cache contains an (address, value) pair and a state; transactional memory adds a tag.
 Cache coherence: the (address, value) pairs must be consistent across the set of caches.
 Basic idea: “any protocol capable of detecting accessibility conflicts can also detect

transaction conflict at no extra cost.”

Shared Memory

Bus

address value state tag cache. . .

11

Transactional Memory

Dennis Kafura – CS5204 – Operating
Systems

Line States

Shared Memory

Bus

address value state tags cache. . .

Name Access Shared? Modified?
invalid none --- ---
valid R yes no
dirty R, W no yes
reserved R, W no no

Transactional Memory

Dennis Kafura – CS5204 – Operating
Systems

Transactional Tags

Shared Memory

Bus

address value state tags cache. . .

Name Meaning
EMPTY contains no data
NORMAL contains committed data
XCOMMIT discard on commit
XABORT discard on abort

Transactional Memory

Dennis Kafura – CS5204 – Operating
Systems

Bus cycles

Shared Memory

Bus

address value state tags cache. . .

Name Kind Meaning New access

READ regular read value shared

RFO regular read value exclusive

WRITE both write back exclusive

T_READ transaction read value shared

T_WRITE transaction read value exclusive

BUSY transaction refuse access unchanged

Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Scenarios

 LT instruction
 If XABORT entry in transactional cache: return value
 If NORMAL entry

 Change NORMAL to XABORT
 Allocate second entry with XCOMMIT (same data)
 Return value

 Otherwise
 Issue T_READ bus cycle

 Successful: set up XABORT/XCOMMIT entries
 BUSY: abort transaction

 LTX instruction
 Same as LT instruction except that T_RFO bus cycle is

used instead and cache line state is RESERVED
 ST instruction

 Same as LTX except that the XABORT value is updated

15

Transactional Memory

Dennis Kafura – CS5204 – Operating Systems

Performance Simulations

comparison methods
•TTS – test/test-and-set

(to implement a spin lock)

•LL/SC – load-linked/store-conditional
(to implement a spin lock)

•MCS – software queueing

•QOSB – hardware queueing

•Transactional Memory

QOSB

TTS

MCS

LL/SC

TM

16

	Transactional Memory
	Introduction
	History
	Transaction Pattern
	Guarantees
	Hardware Instructions
	Hardware Instructions
	Hardware-based Approach
	Example
	Hardware-based Approach
	Cache Implementation
	Line States
	Transactional Tags
	Bus cycles
	Scenarios
	Performance Simulations

